Suppr超能文献

基于深度卷积神经网络和支持向量机算法的脑 MRI 肿瘤分割智能诊断方法。

An Intelligent Diagnosis Method of Brain MRI Tumor Segmentation Using Deep Convolutional Neural Network and SVM Algorithm.

机构信息

Department of Epidemiology and Health Statistics School of Public Health, Xi'an Jiaotong University, Xi'an, China.

School of Public Health, Xi'an Jiaotong University, Xi'an, China.

出版信息

Comput Math Methods Med. 2020 Jul 14;2020:6789306. doi: 10.1155/2020/6789306. eCollection 2020.

Abstract

Among the currently proposed brain segmentation methods, brain tumor segmentation methods based on traditional image processing and machine learning are not ideal enough. Therefore, deep learning-based brain segmentation methods are widely used. In the brain tumor segmentation method based on deep learning, the convolutional network model has a good brain segmentation effect. The deep convolutional network model has the problems of a large number of parameters and large loss of information in the encoding and decoding process. This paper proposes a deep convolutional neural network fusion support vector machine algorithm (DCNN-F-SVM). The proposed brain tumor segmentation model is mainly divided into three stages. In the first stage, a deep convolutional neural network is trained to learn the mapping from image space to tumor marker space. In the second stage, the predicted labels obtained from the deep convolutional neural network training are input into the integrated support vector machine classifier together with the test images. In the third stage, a deep convolutional neural network and an integrated support vector machine are connected in series to train a deep classifier. Run each model on the BraTS dataset and the self-made dataset to segment brain tumors. The segmentation results show that the performance of the proposed model is significantly better than the deep convolutional neural network and the integrated SVM classifier.

摘要

在目前提出的脑分割方法中,基于传统图像处理和机器学习的脑肿瘤分割方法不够理想。因此,基于深度学习的脑分割方法得到了广泛的应用。在基于深度学习的脑肿瘤分割方法中,卷积网络模型具有很好的脑分割效果。深度卷积网络模型在编码和解码过程中存在参数多、信息丢失大的问题。本文提出了一种深度卷积神经网络融合支持向量机算法(DCNN-F-SVM)。所提出的脑肿瘤分割模型主要分为三个阶段。在第一阶段,训练深度卷积神经网络,以学习从图像空间到肿瘤标志物空间的映射。在第二阶段,将从深度卷积神经网络训练中获得的预测标签与测试图像一起输入到集成支持向量机分类器中。在第三阶段,串联连接深度卷积神经网络和集成支持向量机,以训练深度分类器。在 BraTS 数据集和自制数据集上运行每个模型来分割脑肿瘤。分割结果表明,所提出模型的性能明显优于深度卷积神经网络和集成 SVM 分类器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d16/7376410/2a25b4e97db8/CMMM2020-6789306.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验