Suppr超能文献

足细胞和内皮细胞特异性消除BAMBI可确定导致糖尿病性肾小球病的不同转化生长因子-β信号通路。

Podocyte and endothelial-specific elimination of BAMBI identifies differential transforming growth factor-β pathways contributing to diabetic glomerulopathy.

作者信息

Lai Han, Chen Anqun, Cai Hong, Fu Jia, Salem Fadi, Li Yu, He John C, Schlondorff Detlef, Lee Kyung

机构信息

Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China.

出版信息

Kidney Int. 2020 Sep;98(3):601-614. doi: 10.1016/j.kint.2020.03.036. Epub 2020 Apr 26.

Abstract

Transforming growth factor-β (TGF-β) is a central mediator of diabetic nephropathy. The effect of TGF-β, mediated by the type I TGF-β receptor, ALK5, and subsequent Smad2/3 activation results in podocyte apoptosis and loss. Previously, we demonstrated that the genetic deletion of the BMP and Activin Membrane-Bound Inhibitor (BAMBI), a negative modulator TGF-β signaling, accelerates diabetic nephropathy in mice. This was associated with heightened ALK1-mediated activation of Smad1/5 in the glomerular endothelial cells (ECs). Therefore, to evaluate the glomerular cell-specific effects of TGF-β in diabetic nephropathy we examined the effects of the podocyte- or EC-specific loss of Bambi (Pod-Bambi-/- or EC-Bambi-/-) in streptozotocin-induced diabetic mice with endothelial nitric oxide synthase deficiency. Interestingly, although hyperglycemia and body weight loss were similar in all groups of diabetic mice, significant hypertension was present only in the diabetic EC-Bambi-/- mice. While the podocyte or EC-specific loss of BAMBI both accelerated the progression of diabetic nephropathy, the worsened podocyte injury and loss observed in the diabetic Pod-Bambi-/- mice were associated with enhanced Smad3 activation. Increased Smad1/5 activation and EC proliferation were apparent only in the glomeruli of diabetic EC-Bambi-/- mice. The enhanced Smad1/5 activation in diabetic EC-Bambi-/- mice was associated with increased glomerular expression of plasmalemma vesicle-associated protein, pointing to the involvement of immature or dedifferentiated glomerular ECs in diabetic nephropathy. Notably, diabetic EC-Bambi-/- mice displayed podocyte injury and loss that were comparable to diabetic Pod-Bambi-/- mice. Thus, our results highlight the glomerular cell-specific contribution of TGF-β signaling and the intricate cross-talk between injured glomerular cells in the progression of diabetic nephropathy.

摘要

转化生长因子-β(TGF-β)是糖尿病肾病的关键介质。由I型TGF-β受体ALK5介导的TGF-β效应以及随后的Smad2/3激活会导致足细胞凋亡和丢失。此前,我们证明了骨形态发生蛋白和激活素膜结合抑制剂(BAMBI)(一种TGF-β信号的负调节因子)的基因缺失会加速小鼠糖尿病肾病的发展。这与肾小球内皮细胞(ECs)中ALK1介导的Smad1/5激活增强有关。因此,为了评估TGF-β在糖尿病肾病中对肾小球细胞的特异性作用,我们研究了在链脲佐菌素诱导的内皮型一氧化氮合酶缺乏的糖尿病小鼠中,足细胞或内皮细胞特异性缺失Bambi(Pod-Bambi-/-或EC-Bambi-/-)的影响。有趣的是,尽管所有糖尿病小鼠组的高血糖和体重减轻情况相似,但只有糖尿病EC-Bambi-/-小鼠出现了明显的高血压。虽然足细胞或内皮细胞特异性缺失BAMBI均加速了糖尿病肾病的进展,但在糖尿病Pod-Bambi-/-小鼠中观察到的足细胞损伤和丢失加重与Smad3激活增强有关。Smad1/5激活增加和内皮细胞增殖仅在糖尿病EC-Bambi-/-小鼠的肾小球中明显。糖尿病EC-Bambi-/-小鼠中Smad1/5激活增强与质膜囊泡相关蛋白的肾小球表达增加有关,这表明未成熟或去分化的肾小球内皮细胞参与了糖尿病肾病。值得注意的是,糖尿病EC-Bambi-/-小鼠表现出的足细胞损伤和丢失与糖尿病Pod-Bambi-/-小鼠相当。因此,我们的结果突出了TGF-β信号在肾小球细胞中的特异性作用以及在糖尿病肾病进展过程中受损肾小球细胞之间复杂的相互作用。

相似文献

2
BAMBI elimination enhances alternative TGF-β signaling and glomerular dysfunction in diabetic mice.
Diabetes. 2015 Jun;64(6):2220-33. doi: 10.2337/db14-1397. Epub 2015 Jan 9.
3
LRG1 Promotes Diabetic Kidney Disease Progression by Enhancing TGF--Induced Angiogenesis.
J Am Soc Nephrol. 2019 Apr;30(4):546-562. doi: 10.1681/ASN.2018060599. Epub 2019 Mar 11.
4
Podocyte Glucocorticoid Receptors Are Essential for Glomerular Endothelial Cell Homeostasis in Diabetes Mellitus.
J Am Heart Assoc. 2021 Aug 3;10(15):e019437. doi: 10.1161/JAHA.120.019437. Epub 2021 Jul 26.
6
EGF receptor deletion in podocytes attenuates diabetic nephropathy.
J Am Soc Nephrol. 2015 May;26(5):1115-25. doi: 10.1681/ASN.2014020192. Epub 2014 Sep 3.
7
Absence of miR-146a in Podocytes Increases Risk of Diabetic Glomerulopathy via Up-regulation of ErbB4 and Notch-1.
J Biol Chem. 2017 Jan 13;292(2):732-747. doi: 10.1074/jbc.M116.753822. Epub 2016 Dec 2.
8
Podocyte-specific Nox4 deletion affords renoprotection in a mouse model of diabetic nephropathy.
Diabetologia. 2016 Feb;59(2):379-89. doi: 10.1007/s00125-015-3796-0. Epub 2015 Oct 28.
9
MicroRNA-21 in glomerular injury.
J Am Soc Nephrol. 2015 Apr;26(4):805-16. doi: 10.1681/ASN.2013121274. Epub 2014 Aug 21.
10
Thrombospondin-1 is an endogenous activator of TGF-beta in experimental diabetic nephropathy in vivo.
Diabetes. 2007 Dec;56(12):2982-9. doi: 10.2337/db07-0551. Epub 2007 Sep 18.

引用本文的文献

2
Recent advances in therapeutic use of transforming growth factor-beta inhibitors in cancer and fibrosis.
Front Oncol. 2025 Apr 25;15:1489701. doi: 10.3389/fonc.2025.1489701. eCollection 2025.
3
Modulation of TGF-β signaling new approaches toward kidney disease and fibrosis therapy.
Int J Biol Sci. 2025 Feb 3;21(4):1649-1665. doi: 10.7150/ijbs.101548. eCollection 2025.
4
Cellular cross-talk drives mesenchymal transdifferentiation in diabetic kidney disease.
Front Med (Lausanne). 2025 Jan 7;11:1499473. doi: 10.3389/fmed.2024.1499473. eCollection 2024.
5
LRG1 loss effectively restrains glomerular TGF-β signaling to attenuate diabetic kidney disease.
Mol Ther. 2024 Sep 4;32(9):3177-3193. doi: 10.1016/j.ymthe.2024.06.027. Epub 2024 Jun 22.
6
Podocyte-derived soluble RARRES1 drives kidney disease progression through direct podocyte and proximal tubular injury.
Kidney Int. 2024 Jul;106(1):50-66. doi: 10.1016/j.kint.2024.04.011. Epub 2024 Apr 30.
9
PLVAP as an Early Marker of Glomerular Endothelial Damage in Mice with Diabetic Kidney Disease.
Int J Mol Sci. 2023 Jan 6;24(2):1094. doi: 10.3390/ijms24021094.
10
Cellular crosstalk of glomerular endothelial cells and podocytes in diabetic kidney disease.
J Cell Commun Signal. 2022 Sep;16(3):313-331. doi: 10.1007/s12079-021-00664-w. Epub 2022 Jan 18.

本文引用的文献

2
The many talents of transforming growth factor-β in the kidney.
Curr Opin Nephrol Hypertens. 2019 May;28(3):203-210. doi: 10.1097/MNH.0000000000000490.
3
LRG1 Promotes Diabetic Kidney Disease Progression by Enhancing TGF--Induced Angiogenesis.
J Am Soc Nephrol. 2019 Apr;30(4):546-562. doi: 10.1681/ASN.2018060599. Epub 2019 Mar 11.
4
Single-Cell RNA Profiling of Glomerular Cells Shows Dynamic Changes in Experimental Diabetic Kidney Disease.
J Am Soc Nephrol. 2019 Apr;30(4):533-545. doi: 10.1681/ASN.2018090896. Epub 2019 Mar 7.
5
Gene expression profiles of glomerular endothelial cells support their role in the glomerulopathy of diabetic mice.
Kidney Int. 2018 Aug;94(2):326-345. doi: 10.1016/j.kint.2018.02.028. Epub 2018 May 31.
6
A Single-Cell Transcriptome Atlas of the Mouse Glomerulus.
J Am Soc Nephrol. 2018 Aug;29(8):2060-2068. doi: 10.1681/ASN.2018030238. Epub 2018 May 24.
7
Glomerular Endothelial Cell Stress and Cross-Talk With Podocytes in Early [corrected] Diabetic Kidney Disease.
Front Med (Lausanne). 2018 Mar 23;5:76. doi: 10.3389/fmed.2018.00076. eCollection 2018.
10
Glomerular cell crosstalk.
Curr Opin Nephrol Hypertens. 2016 May;25(3):187-93. doi: 10.1097/MNH.0000000000000221.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验