School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, Arizona; Evolutionary Biology Graduate Program, School of Life Sciences, Arizona State University at the West Campus, Glendale, Arizona;, Email:
School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, Arizona; BEYOND Center for Fundamental Concepts in Science, Arizona State University at the West Campus, Glendale, Arizona.
Comp Med. 2020 Oct 1;70(5):358-367. doi: 10.30802/AALAS-CM-19-000108. Epub 2020 Aug 4.
In humans, abnormal thickening of the left ventricle of the heart clinically defines hypertrophic cardiomyopathy (HCM), a common inherited cardiovascular disorder that can precede a sudden cardiac death event. The wide range of clinical presentations in HCM obscures genetic variants that may influence an individual's susceptibility to sudden cardiac death. Although exon sequencing of major sarcomere genes can be used to detect high-impact causal mutations, this strategy is successful in only half of patient cases. The incidence of left ventricular hypertrophy (LVH) in a managed research colony of rhesus macaques provides an excellent comparative model in which to explore the genomic etiology of severe HCM and sudden cardiac death. Because no rhesus HCM-associated mutations have been reported, we used a next-generation genotyping assay that targets 7 sarcomeric rhesus genes within 63 genomic sites that are orthologous to human genomic regions known to harbor HCM disease variants. Amplicon sequencing was performed on 52 macaques with confirmed LVH and 42 unrelated, unaffected animals representing both the Indian and Chinese rhesus macaque subspecies. Bias-reduced logistic regression uncovered a risk haplotype in the rhesus gene, which is frequently disrupted in both human and feline HCM; this haplotype implicates an intronic variant strongly associated with disease in either homozygous or carrier form. Our results highlight that leveraging evolutionary genomic data provides a unique, practical strategy for minimizing population bias in complex disease studies.
在人类中,心脏左心室的异常增厚临床上定义为肥厚型心肌病(HCM),这是一种常见的遗传性心血管疾病,可导致心脏性猝死事件。HCM 的临床表现范围广泛,掩盖了可能影响个体对心脏性猝死易感性的遗传变异。虽然主要肌节基因的外显子测序可用于检测高影响的因果突变,但这种策略在一半的患者病例中是成功的。恒河猴管理研究群体中的左心室肥厚(LVH)发生率为探索严重 HCM 和心脏性猝死的基因组病因提供了一个极好的比较模型。由于尚未报道恒河猴 HCM 相关突变,我们使用了下一代基因分型检测方法,该方法靶向 63 个基因组位点中的 7 个肌节恒河猴基因,这些位点与已知携带 HCM 疾病变异的人类基因组区域同源。对 52 只经证实患有 LVH 的猕猴和 42 只无相关、未受影响的动物进行了扩增子测序,这些动物代表了印度和中国恒河猴亚种。偏倚降低的逻辑回归揭示了恒河猴基因中的风险单倍型,该单倍型在人类和猫肥厚型心肌病中经常受到破坏;这种单倍型提示内含子变异与纯合子或携带者形式的疾病强烈相关。我们的研究结果强调,利用进化基因组数据为最小化复杂疾病研究中的群体偏倚提供了一种独特而实用的策略。