Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA.
Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
Nucleic Acids Res. 2020 Sep 18;48(16):8883-8900. doi: 10.1093/nar/gkaa621.
Microbial and viral communities transform the chemistry of Earth's ecosystems, yet the specific reactions catalyzed by these biological engines are hard to decode due to the absence of a scalable, metabolically resolved, annotation software. Here, we present DRAM (Distilled and Refined Annotation of Metabolism), a framework to translate the deluge of microbiome-based genomic information into a catalog of microbial traits. To demonstrate the applicability of DRAM across metabolically diverse genomes, we evaluated DRAM performance on a defined, in silico soil community and previously published human gut metagenomes. We show that DRAM accurately assigned microbial contributions to geochemical cycles and automated the partitioning of gut microbial carbohydrate metabolism at substrate levels. DRAM-v, the viral mode of DRAM, established rules to identify virally-encoded auxiliary metabolic genes (AMGs), resulting in the metabolic categorization of thousands of putative AMGs from soils and guts. Together DRAM and DRAM-v provide critical metabolic profiling capabilities that decipher mechanisms underpinning microbiome function.
微生物和病毒群落改变了地球生态系统的化学性质,但由于缺乏可扩展的、代谢解析的注释软件,这些生物引擎催化的特定反应很难被解码。在这里,我们提出了 DRAM(代谢的蒸馏和精炼注释),这是一种将基于微生物组的基因组信息转化为微生物特征目录的框架。为了展示 DRAM 在代谢多样化基因组中的适用性,我们在一个定义明确的、基于计算机的土壤群落和以前发表的人类肠道宏基因组上评估了 DRAM 的性能。我们表明,DRAM 准确地将微生物对地球化学循环的贡献分配,并自动对肠道微生物碳水化合物代谢进行底物水平的划分。DRAM-v 是 DRAM 的病毒模式,它建立了识别病毒编码辅助代谢基因 (AMG) 的规则,从而对土壤和肠道中的数千个潜在 AMG 进行了代谢分类。DRAM 和 DRAM-v 共同提供了关键的代谢分析能力,能够破译支持微生物组功能的机制。