Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France.
NeuroCure Cluster of Excellence and Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate member of the Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
Neuropathol Appl Neurobiol. 2021 Feb;47(2):218-235. doi: 10.1111/nan.12655. Epub 2020 Sep 5.
Transforming growth factor-β (TGF-β) signalling is thought to contribute to the remodelling of extracellular matrix (ECM) of skeletal muscle and to functional decline in patients with muscular dystrophies. We wanted to determine the role of TGF-β-induced ECM remodelling in dystrophic muscle.
We experimentally induced the pathological hallmarks of severe muscular dystrophy by mechanically overloading the plantaris muscle in mice. Furthermore, we determined the role of TGF-β signalling on dystrophic tissue modulation and on muscle function by (i) overloading myostatin knockout (Mstn ) mice and (ii) by additional pharmacological TGF-β inhibition via halofuginone.
Transcriptome analysis of overloaded muscles revealed upregulation predominantly of genes associated with ECM, inflammation and metalloproteinase activity. Histology revealed in wild-type mice signs of severe muscular dystrophy including myofibres with large variation in size and internalized myonuclei, as well as increased ECM deposition. At the same time, muscle weight had increased by 208% and muscle force by 234%. Myostatin deficiency blunted the effect of overload on muscle mass (59% increase) and force (76% increase), while having no effect on ECM deposition. Concomitant treatment with halofuginone blunted overload-induced muscle hypertrophy and muscle force increase, while reducing ECM deposition and increasing myofibre size.
ECM remodelling is associated with an increase in muscle mass and force in overload-modelled dystrophic muscle. Lack of myostatin is not advantageous and inhibition of ECM deposition by halofuginone is disadvantageous for muscle plasticity in response to stimuli that induce dystrophic muscle.
转化生长因子-β(TGF-β)信号被认为有助于重塑骨骼肌的细胞外基质(ECM),并导致肌肉营养不良患者的功能下降。我们希望确定 TGF-β诱导的 ECM 重塑在肌肉营养不良中的作用。
我们通过机械性超负荷小鼠的比目鱼肌来实验性地诱导严重肌肉营养不良的病理特征。此外,我们通过(i)超负荷肌生成素敲除(Mstn)小鼠和(ii)通过另外的 TGF-β 抑制药理学halofuginone,来确定 TGF-β信号在营养不良组织调节和肌肉功能中的作用。
超负荷肌肉的转录组分析显示,主要上调了与 ECM、炎症和金属蛋白酶活性相关的基因。组织学显示,在野生型小鼠中出现了严重的肌肉营养不良的迹象,包括肌纤维大小差异很大和核内移,以及 ECM 沉积增加。同时,肌肉重量增加了 208%,肌肉力量增加了 234%。肌生成素缺乏减弱了超负荷对肌肉质量(增加 59%)和力量(增加 76%)的影响,而对 ECM 沉积没有影响。同时用 halofuginone 治疗减弱了超负荷诱导的肌肉肥大和肌肉力量增加,同时减少了 ECM 沉积并增加了肌纤维大小。
在超负荷建模的肌肉营养不良中,ECM 重塑与肌肉质量和力量的增加有关。缺乏肌生成素并没有优势,而 halofuginone 抑制 ECM 沉积不利于对诱导肌肉营养不良的刺激的肌肉可塑性。