Suppr超能文献

贵金属纳米颗粒超声喷雾热解处理的进展——综述

Advances in Ultrasonic Spray Pyrolysis Processing of Noble Metal Nanoparticles-Review.

作者信息

Majerič Peter, Rudolf Rebeka

机构信息

Faculty of Mechanical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia.

Zlatarna Celje d.o.o., Kersnikova 19, 3000 Celje, Slovenia.

出版信息

Materials (Basel). 2020 Aug 7;13(16):3485. doi: 10.3390/ma13163485.

Abstract

In the field of synthesis and processing of noble metal nanoparticles, the study of the bottom-up method, called Ultrasonic Spray Pyrolysis (USP), is becoming increasingly important. This review analyses briefly the features of USP, to underline the physical, chemical and technological characteristics for producing nanoparticles and nanoparticle composites with Au and Ag. The main aim is to understand USP parameters, which are responsible for nanoparticle formation. There are two nanoparticle formation mechanisms in USP: Droplet-To-Particle (DTP) and Gas-To-Particle (GTP). This review shows how the USP process is able to produce Au, Ag/TiO, Au/TiO, Au/FeO and Ag/(Y Eu)O nanoparticles, and presents the mechanisms of formation for a particular type of nanoparticle. Namely, the presented Au and Ag nanoparticles are intended for use in nanomedicine, sensing applications, electrochemical devices and catalysis, in order to benefit from their properties, which cannot be achieved with identical bulk materials. The development of new noble metal nanoparticles with USP is a constant goal in Nanotechnology, with the objective to obtain increasingly predictable final properties of nanoparticles.

摘要

在贵金属纳米颗粒的合成与加工领域,一种被称为超声喷雾热解(USP)的自下而上方法的研究正变得越来越重要。本综述简要分析了USP的特点,以强调生产金和银纳米颗粒及纳米颗粒复合材料的物理、化学和技术特性。主要目的是了解负责纳米颗粒形成的USP参数。USP中有两种纳米颗粒形成机制:液滴到颗粒(DTP)和气态到颗粒(GTP)。本综述展示了USP工艺如何能够生产金、银/二氧化钛、金/二氧化钛、金/氧化铁和银/(钇铕)氧化物纳米颗粒,并介绍了特定类型纳米颗粒的形成机制。具体而言,所展示的金和银纳米颗粒旨在用于纳米医学、传感应用、电化学装置和催化领域,以便受益于它们的特性,而相同的块状材料无法实现这些特性。利用USP开发新型贵金属纳米颗粒是纳米技术中的一个持续目标,目的是获得越来越可预测的纳米颗粒最终性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1b1/7476056/c1d1b05a417d/materials-13-03485-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验