Suppr超能文献

早期急性呼吸窘迫综合征肺泡死腔增加的生理机制和空间分布:一项实验研究。

Physiological mechanism and spatial distribution of increased alveolar dead-space in early ARDS: An experimental study.

机构信息

Postgraduate Program of Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

Acta Anaesthesiol Scand. 2021 Jan;65(1):100-108. doi: 10.1111/aas.13702. Epub 2020 Sep 28.

Abstract

BACKGROUND

We aimed to investigate the physiological mechanism and spatial distribution of increased physiological dead-space, an early marker of ARDS mortality, in the initial stages of ARDS. We hypothesized that: increased dead-space results from the spatial redistribution of pulmonary perfusion, not ventilation; such redistribution is not related to thromboembolism (ie, areas with perfusion = 0 and infinite ventilation-perfusion ratio, ), but rather to moderate shifts of perfusion increasing in non-dependent regions.

METHODS

Five healthy anesthetized sheep received protective ventilation for 20 hours, while endotoxin was continuously infused. Maps of voxel-level lung ventilation, perfusion, , CO partial pressures, and alveolar dead-space fraction were estimated from positron emission tomography at baseline and 20 hours.

RESULTS

Alveolar dead-space fraction increased during the 20 hours (+0.05, P = .031), mainly in non-dependent regions (+0.03, P = .031). This was mediated by perfusion redistribution away from non-dependent regions (-5.9%, P = .031), while the spatial distribution of ventilation did not change, resulting in increased in non-dependent regions. The increased alveolar dead-space derived mostly from areas with intermediate (0.5≤ ≤10), not areas of nearly "complete" dead-space ( >10).

CONCLUSIONS

In this early ARDS model, increases in alveolar dead-space occur within 20 hours due to the regional redistribution of perfusion and not ventilation. This moderate redistribution suggests changes in the interplay between active and passive perfusion redistribution mechanisms (including hypoxic vasoconstriction and gravitational effects), not the appearance of thromboembolism. Hence, the association between mortality and increased dead-space possibly arises from the former, reflecting gas-exchange inefficiency due to perfusion heterogeneity. Such heterogeneity results from the injury and exhaustion of compensatory mechanisms for perfusion redistribution.

摘要

背景

我们旨在研究 ARDS 死亡率的早期标志物——生理死腔增加的生理机制和空间分布。我们假设:死腔的增加是由于肺灌注的空间再分布引起的,而不是通气引起的;这种再分布与血栓栓塞无关(即,灌注=0 和无限通气-灌注比的区域),而是与非依赖区灌注适度增加有关。

方法

5 只健康麻醉绵羊接受保护性通气 20 小时,同时持续输注内毒素。在基线和 20 小时时,通过正电子发射断层扫描估计体素水平肺通气、灌注、 、CO 分压和肺泡死腔分数的图谱。

结果

肺泡死腔分数在 20 小时内增加(+0.05,P=0.031),主要在非依赖区(+0.03,P=0.031)。这是由灌注从非依赖区重新分布引起的(-5.9%,P=0.031),而通气的空间分布没有变化,导致非依赖区的增加。增加的肺泡死腔主要来自中等 (0.5≤ ≤10)的区域,而不是几乎“完全”死腔( >10)的区域。

结论

在这个早期 ARDS 模型中,肺泡死腔的增加发生在 20 小时内,是由于灌注的区域性再分布而不是通气。这种适度的再分布表明主动和被动灌注再分布机制(包括缺氧性血管收缩和重力效应)之间的相互作用发生了变化,而不是血栓栓塞的出现。因此,死亡率与增加的死腔之间的关联可能来自前者,反映了由于灌注异质性导致的气体交换效率低下。这种异质性是由于灌注再分布的补偿机制的损伤和衰竭引起的。

相似文献

1
Physiological mechanism and spatial distribution of increased alveolar dead-space in early ARDS: An experimental study.
Acta Anaesthesiol Scand. 2021 Jan;65(1):100-108. doi: 10.1111/aas.13702. Epub 2020 Sep 28.
4
Electrical impedance tomography and heterogeneity of pulmonary perfusion and ventilation in porcine acute lung injury.
Acta Anaesthesiol Scand. 2009 Nov;53(10):1300-9. doi: 10.1111/j.1399-6576.2009.02103.x. Epub 2009 Aug 31.
8
[Gas exchange in acute respiratory distress syndrome].
Medicina (B Aires). 2003;63(2):157-64.
9
Ventilation-perfusion distributions and gas exchange during carbon dioxide-pneumoperitoneum in a porcine model.
Br J Anaesth. 2010 Nov;105(5):691-7. doi: 10.1093/bja/aeq211. Epub 2010 Aug 6.

引用本文的文献

1
Imaging in animal models: bridging experimental findings and human pathophysiology.
Crit Care. 2025 Jul 26;29(1):327. doi: 10.1186/s13054-025-05574-6.
2
Intraoperative Factors Associated With Mechanical Ventilation Duration Following Aortic Surgery.
J Cardiothorac Vasc Anesth. 2025 May;39(5):1205-1213. doi: 10.1053/j.jvca.2025.02.021. Epub 2025 Feb 15.
3
Effects of Lung Expansion on Global and Regional Pulmonary Blood Volume in a Sheep Model of Acute Lung Injury.
Anesthesiology. 2025 Jun 1;142(6):1071-1084. doi: 10.1097/ALN.0000000000005412. Epub 2025 Feb 12.
4
Imaging the pulmonary vasculature in acute respiratory distress syndrome.
Nitric Oxide. 2024 Jun 1;147:6-12. doi: 10.1016/j.niox.2024.04.004. Epub 2024 Apr 6.
5
Lung functional imaging.
Breathe (Sheff). 2023 Sep;19(3):220272. doi: 10.1183/20734735.0272-2022. Epub 2023 Nov 14.
6
Worsening of lung perfusion to tissue density distributions during early acute lung injury.
J Appl Physiol (1985). 2023 Aug 1;135(2):239-250. doi: 10.1152/japplphysiol.00028.2023. Epub 2023 Jun 8.
9
Alveolar dead space fraction is not associated with early RV systolic dysfunction in pediatric ARDS.
Pediatr Pulmonol. 2023 Feb;58(2):559-565. doi: 10.1002/ppul.26237. Epub 2022 Dec 1.

本文引用的文献

1
Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19.
N Engl J Med. 2020 Jul 9;383(2):120-128. doi: 10.1056/NEJMoa2015432. Epub 2020 May 21.
2
Real-time effects of PEEP and tidal volume on regional ventilation and perfusion in experimental lung injury.
Intensive Care Med Exp. 2020 Feb 21;8(1):10. doi: 10.1186/s40635-020-0298-2.
3
Hypoxic Pulmonary Vasoconstriction: From Molecular Mechanisms to Medicine.
Chest. 2017 Jan;151(1):181-192. doi: 10.1016/j.chest.2016.09.001. Epub 2016 Sep 16.
5
Quantitative Dual-Energy Computed Tomography Supports a Vascular Etiology of Smoking-induced Inflammatory Lung Disease.
Am J Respir Crit Care Med. 2016 Mar 15;193(6):652-61. doi: 10.1164/rccm.201506-1196OC.
6
Dead space: the physiology of wasted ventilation.
Eur Respir J. 2015 Jun;45(6):1704-16. doi: 10.1183/09031936.00137614. Epub 2014 Nov 13.
8
Deadspace ventilation: a waste of breath!
Intensive Care Med. 2011 May;37(5):735-46. doi: 10.1007/s00134-011-2194-4. Epub 2011 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验