Martinka Maksymiak Magdalena, Zięba Magdalena, Orchel Arkadiusz, Musiał-Kulik Monika, Kowalczuk Marek, Adamus Grazyna
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34 Str., 41-819 Zabrze, Poland.
Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jednosci 8 Str., 41-208 Sosnowiec, Poland.
Materials (Basel). 2020 Sep 18;13(18):4153. doi: 10.3390/ma13184153.
This article reports the studies on bioactive (co)oligoesters towards their use as controlled delivery systems of p-anisic acid. The objects of the study were oligo[3-hydroxy-3-(4-methoxybenzoyloxymethyl)propionate], (p-AA-CH-HP) oligoester, and oligo[(3-hydroxy-3-(4-methoxybenzoyloxymethyl)propionate)-co-(3-hydroxybutyrate)] [(p-AA-CH-HP)-co-(HB) (co)oligoesters containing p-anisic acid moiety (p-AA, as the bioactive end and side groups) connected to the polymer backbone through the susceptible to hydrolysis ester bonds. A thorough insight into the hydrolysis process of the bioactive (co)oligoesters studied has allowed us to determine the release profile of p-AA as well as to identify polymer carrier degradation products. The p-AA release profiles determined on the basis of high-performance liquid chromatography (HPLC) measurements showed that the release of the bioactive compound from the developed (co)oligoester systems was regular and no burst effect occurred. Biological studies demonstrated that studied (homo)- and (co)oligoesters were well tolerated by HaCaT cells because none of them showed notable cytotoxicity. They promoted keratinocyte growth at moderate concentrations. Bioactive (co)oligoesters containing p-anisic acid moiety had somewhat decreased cell proliferation at the highest concentration (100 µg/mL). The important practical inference of the current study is that the (co)oligoesters developed have a relatively large load of the biologically active substance (p-AA) per polymer macromolecule, which unlocks their potential application in the cosmetic industry.
本文报道了关于生物活性(共)低聚酯用作对甲氧基苯甲酸控释系统的研究。研究对象为聚[3-羟基-3-(4-甲氧基苯甲酰氧基甲基)丙酸酯]、(对甲氧基苯甲酸 - 己内酯 - 丙交酯)低聚酯,以及聚[(3-羟基-3-(4-甲氧基苯甲酰氧基甲基)丙酸酯)-co-(3-羟基丁酸酯)] [(对甲氧基苯甲酸 - 己内酯 - 丙交酯)-co-(3-羟基丁酸酯)] (共)低聚酯,其中含有通过易水解酯键连接到聚合物主链的对甲氧基苯甲酸部分(对甲氧基苯甲酸,作为生物活性端基和侧基)。对所研究的生物活性(共)低聚酯水解过程的深入了解,使我们能够确定对甲氧基苯甲酸的释放曲线,并识别聚合物载体的降解产物。基于高效液相色谱(HPLC)测量确定的对甲氧基苯甲酸释放曲线表明,从所开发的(共)低聚酯系统中释放生物活性化合物是有规律的,且未出现突释效应。生物学研究表明,所研究的(均)低聚酯和(共)低聚酯对HaCaT细胞具有良好的耐受性,因为它们均未表现出明显的细胞毒性。它们在中等浓度下促进角质形成细胞生长。含有对甲氧基苯甲酸部分的生物活性(共)低聚酯在最高浓度(100 µg/mL)时细胞增殖有所下降。当前研究的一个重要实际推论是,所开发的(共)低聚酯每个聚合物大分子具有相对较高的生物活性物质(对甲氧基苯甲酸)负载量,这为它们在化妆品行业的潜在应用开辟了道路。