Suppr超能文献

通过可穿戴传感器和动态预测模型实现实时个性化医疗:临床医学的新范式。

Real-time, personalized medicine through wearable sensors and dynamic predictive modeling: a new paradigm for clinical medicine.

作者信息

Tyler Jonathan, Choi Sung Won, Tewari Muneesh

机构信息

Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, MI.

Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI.

出版信息

Curr Opin Syst Biol. 2020 Apr;20:17-25. doi: 10.1016/j.coisb.2020.07.001. Epub 2020 Jul 7.

Abstract

Accurately predicting the onset and course of a disease in an individual is a major unmet challenge in medicine due to the complex and dynamic nature of disease progression. Continuous data from wearable technologies and biomarker data with a fine time resolution provide a unique opportunity to learn more about disease evolution and to usher in a new era of personalized and real-time medicine. Herein, we propose the potential of real-time, continuously measured physiological data as a noninvasive biomarker approach for detecting disease transitions, using allogeneic hematopoietic stem cell transplant (HCT) patient care as an example. Additionally, we review a recent computational technique, the landscape dynamic network biomarker method, that uses biomarker data to identify transition states in disease progression and explore how to use it with both biomarker and physiological data for earlier detection of graft-versus-host disease specifically. Throughout, we argue that increased collaboration across multiple fields is essential to realizing the full potential of wearable and biomarker data in a new paradigm of personalized and real-time medicine.

摘要

由于疾病进展具有复杂和动态的特性,准确预测个体疾病的发作和病程是医学领域一项尚未满足的重大挑战。可穿戴技术提供的连续数据以及具有精细时间分辨率的生物标志物数据,为深入了解疾病演变提供了独特机会,并开创个性化和实时医学的新时代。在此,我们以异基因造血干细胞移植(HCT)患者护理为例,提出连续实时测量的生理数据作为检测疾病转变的非侵入性生物标志物方法的潜力。此外,我们回顾了一种最新的计算技术——景观动态网络生物标志物方法,该方法利用生物标志物数据识别疾病进展中的转变状态,并探讨如何将其与生物标志物和生理数据结合使用,以专门更早地检测移植物抗宿主病。我们始终认为,跨多个领域加强合作对于在个性化和实时医学的新范式中充分发挥可穿戴和生物标志物数据的潜力至关重要。

相似文献

1
Real-time, personalized medicine through wearable sensors and dynamic predictive modeling: a new paradigm for clinical medicine.
Curr Opin Syst Biol. 2020 Apr;20:17-25. doi: 10.1016/j.coisb.2020.07.001. Epub 2020 Jul 7.
3
Flexible Electronics toward Wearable Sensing.
Acc Chem Res. 2019 Mar 19;52(3):523-533. doi: 10.1021/acs.accounts.8b00500. Epub 2019 Feb 15.
4
Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs.
ACS Sens. 2020 Sep 25;5(9):2679-2700. doi: 10.1021/acssensors.0c01318. Epub 2020 Aug 21.
5
[Wearable devices: Perspectives on assessing and monitoring human physiological status].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Dec 25;40(6):1045-1052. doi: 10.7507/1001-5515.202303043.
6
Skin-Interfaced Wearable Sweat Sensors for Precision Medicine.
Chem Rev. 2023 Apr 26;123(8):5049-5138. doi: 10.1021/acs.chemrev.2c00823. Epub 2023 Mar 27.
8
Wearable chemical sensors for biomarker discovery in the omics era.
Nat Rev Chem. 2022 Dec;6(12):899-915. doi: 10.1038/s41570-022-00439-w. Epub 2022 Nov 15.
10
Recent Advancements in Physiological, Biochemical, and Multimodal Sensors Based on Flexible Substrates: Strategies, Technologies, and Integrations.
ACS Appl Mater Interfaces. 2023 May 10;15(18):21721-21745. doi: 10.1021/acsami.3c02690. Epub 2023 Apr 26.

引用本文的文献

2
Multidomain Molecular Sensor Devices, Systems, and Algorithms for Improved Physiological Monitoring.
Micromachines (Basel). 2025 Jul 31;16(8):900. doi: 10.3390/mi16080900.
4
Preparing Wearable Data for AI-Powered Mood and Compliance Prediction in HCT Patients and Caregivers.
Proc IEEE Int Conf Big Data. 2024 Dec;2024:4996-5005. doi: 10.1109/bigdata62323.2024.10825132.
6
RNA-based diagnostic innovations: A new frontier in diabetes diagnosis and management.
Diab Vasc Dis Res. 2025 Mar-Apr;22(2):14791641251334726. doi: 10.1177/14791641251334726. Epub 2025 Apr 14.
9
Approaches of wearable and implantable biosensor towards of developing in precision medicine.
Front Med (Lausanne). 2024 Jul 18;11:1390634. doi: 10.3389/fmed.2024.1390634. eCollection 2024.

本文引用的文献

1
Detection for disease tipping points by landscape dynamic network biomarkers.
Natl Sci Rev. 2019 Jul;6(4):775-785. doi: 10.1093/nsr/nwy162. Epub 2018 Dec 28.
2
Harnessing wearable device data to improve state-level real-time surveillance of influenza-like illness in the USA: a population-based study.
Lancet Digit Health. 2020 Feb;2(2):e85-e93. doi: 10.1016/S2589-7500(19)30222-5. Epub 2020 Jan 16.
4
Identifying critical states of hepatocellular carcinoma based on landscape dynamic network biomarkers.
Comput Biol Chem. 2020 Apr;85:107202. doi: 10.1016/j.compbiolchem.2020.107202. Epub 2020 Jan 10.
6
Usefulness of Certain Protein Biomarkers for Prediction of Coronary Heart Disease.
Am J Cardiol. 2020 Feb 15;125(4):542-548. doi: 10.1016/j.amjcard.2019.11.016. Epub 2019 Nov 19.
8
Seeking biomarkers for acute graft-versus-host disease: where we are and where we are heading?
Biomark Res. 2019 Aug 7;7:17. doi: 10.1186/s40364-019-0167-x. eCollection 2019.
9
Evolution of Wearable Devices with Real-Time Disease Monitoring for Personalized Healthcare.
Nanomaterials (Basel). 2019 May 29;9(6):813. doi: 10.3390/nano9060813.
10
Using Machine Learning and the Electronic Health Record to Predict Complicated Infection.
Open Forum Infect Dis. 2019 Apr 20;6(5):ofz186. doi: 10.1093/ofid/ofz186. eCollection 2019 May.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验