Suppr超能文献

中国新型冠状病毒病(COVID-19)疫情的现状和未来预测:动力学建模分析。

Current trends and future prediction of novel coronavirus disease (COVID-19) epidemic in China: a dynamical modeling analysis.

机构信息

College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, China.

Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.

出版信息

Math Biosci Eng. 2020 Apr 8;17(4):3052-3061. doi: 10.3934/mbe.2020173.

Abstract

The novel coronavirus disease 2019 (COVID-19) infection broke out in December 2019 in Wuhan, and rapidly overspread 31 provinces in mainland China on 31 January 2020. In the face of the increasing number of daily confirmed infected cases, it has become a common concern and worthy of pondering when the infection will appear the turning points, what is the final size and when the infection would be ultimately controlled. Based on the current control measures, we proposed a dynamical transmission model with contact trace and quarantine and predicted the peak time and final size for daily confirmed infected cases by employing Markov Chain Monte Carlo algorithm. We estimate the basic reproductive number of COVID-19 is 5.78 (95%CI: 5.71-5.89). Under the current intervention before 31 January, the number of daily confirmed infected cases is expected to peak on around 11 February 2020 with the size of 4066 (95%CI: 3898-4472). The infection of COVID-19 might be controlled approximately after 18 May 2020. Reducing contact and increasing trace about the risk population are likely to be the present effective measures.

摘要

2019 年新型冠状病毒病(COVID-19)感染于 2019 年 12 月在武汉爆发,并于 2020 年 1 月 31 日迅速蔓延至中国大陆的 31 个省。面对每日确诊感染人数的不断增加,感染何时会出现拐点、最终规模有多大以及何时最终得到控制,已成为人们普遍关注和值得思考的问题。基于目前的防控措施,我们提出了一个具有接触追踪和隔离的动力学传播模型,并采用马尔可夫链蒙特卡罗算法预测了每日确诊感染病例的峰值时间和最终规模。我们估计 COVID-19 的基本再生数为 5.78(95%CI:5.71-5.89)。在 1 月 31 日前的当前干预措施下,预计每日确诊感染病例数量将在 2020 年 2 月 11 日左右达到峰值,规模为 4066(95%CI:3898-4472)。COVID-19 的感染可能会在 2020 年 5 月 18 日左右得到控制。减少接触和增加对风险人群的追踪可能是目前有效的措施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验