Suppr超能文献

T 细胞受体工程化 T 细胞的抗癌潜力。

The Anticancer Potential of T Cell Receptor-Engineered T Cells.

机构信息

Clinical Research Division and Program in Immunology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA.

Clinical Research Division and Program in Immunology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA.

出版信息

Trends Cancer. 2021 Jan;7(1):48-56. doi: 10.1016/j.trecan.2020.09.002. Epub 2020 Sep 26.

Abstract

Adoptively transferred T cell receptor (TCR)-transgenic T cells (TCR-T cells) are not restricted by cell surface expression of their targets and are therefore poised to become a main pillar of cellular cancer immunotherapies. Addressing clinical and laboratory data, we discuss emerging features for the efficient deployment of novel TCR-T therapies, such as selection of ideal TCRs targeting validated epitopes with well-characterized cancer cell expression and processing, enhancing TCR-T effector function, trafficking, expansion, persistence, and memory formation by strategic selection of substrate cells, and gene-engineering with synthetic co-stimulatory circuits. Overall, a better understanding of the relevant mechanisms of action and resistance will help prioritize the vast array of potential TCR-T optimizations for future clinical products.

摘要

过继性转移的 T 细胞受体 (TCR)-转基因 T 细胞 (TCR-T 细胞) 不受其靶细胞表面表达的限制,因此有望成为细胞癌症免疫疗法的主要支柱。根据临床和实验室数据,我们讨论了有效部署新型 TCR-T 疗法的新特征,例如选择针对具有明确肿瘤细胞表达和加工特征的已验证表位的理想 TCR,通过策略性选择基质细胞来增强 TCR-T 效应功能、归巢、扩增、持久性和记忆形成,以及通过合成共刺激回路进行基因工程。总的来说,更好地了解相关作用机制和耐药性将有助于为未来的临床产品确定大量潜在的 TCR-T 优化方案的优先级。

相似文献

1
The Anticancer Potential of T Cell Receptor-Engineered T Cells.
Trends Cancer. 2021 Jan;7(1):48-56. doi: 10.1016/j.trecan.2020.09.002. Epub 2020 Sep 26.
3
Cancer immunotherapy with lymphocytes genetically engineered with T cell receptors for solid cancers.
Immunol Lett. 2019 Dec;216:51-62. doi: 10.1016/j.imlet.2019.10.002. Epub 2019 Oct 6.
5
Induction of Neoantigen-Specific Cytotoxic T Cells and Construction of T-cell Receptor-Engineered T Cells for Ovarian Cancer.
Clin Cancer Res. 2018 Nov 1;24(21):5357-5367. doi: 10.1158/1078-0432.CCR-18-0142. Epub 2018 May 2.
6
IND-Enabling Studies for a Clinical Trial to Genetically Program a Persistent Cancer-Targeted Immune System.
Clin Cancer Res. 2019 Feb 1;25(3):1000-1011. doi: 10.1158/1078-0432.CCR-18-0963. Epub 2018 Nov 8.
7
Rapid Construction of Antitumor T-cell Receptor Vectors from Frozen Tumors for Engineered T-cell Therapy.
Cancer Immunol Res. 2018 May;6(5):594-604. doi: 10.1158/2326-6066.CIR-17-0434. Epub 2018 Mar 27.
8
Redirected T cells in cancer therapy.
Expert Opin Biol Ther. 2015;15(12):1667-70. doi: 10.1517/14712598.2015.1096340. Epub 2015 Oct 29.
9
Engineering Strategies to Enhance TCR-Based Adoptive T Cell Therapy.
Cells. 2020 Jun 18;9(6):1485. doi: 10.3390/cells9061485.
10
High-throughput discovery of cancer-targeting TCRs.
Methods Enzymol. 2019;629:401-417. doi: 10.1016/bs.mie.2019.10.009. Epub 2019 Nov 6.

引用本文的文献

1
Recent advances and challenges of cellular immunotherapies in lung cancer treatment.
Exp Hematol Oncol. 2025 Jul 7;14(1):94. doi: 10.1186/s40164-025-00679-8.
2
Cancer immunotherapy and its facilitation by nanomedicine.
Biomark Res. 2024 Aug 3;12(1):77. doi: 10.1186/s40364-024-00625-6.
3
Engineered T Cell Receptor for Cancer Immunotherapy.
Biomol Ther (Seoul). 2024 Jul 1;32(4):424-431. doi: 10.4062/biomolther.2023.197. Epub 2024 Jun 7.
5
The potential and promise for clinical application of adoptive T cell therapy in cancer.
J Transl Med. 2024 May 1;22(1):413. doi: 10.1186/s12967-024-05206-7.
6
Synthetic dual co-stimulation increases the potency of HIT and TCR-targeted cell therapies.
Nat Cancer. 2024 May;5(5):760-773. doi: 10.1038/s43018-024-00744-x. Epub 2024 Mar 19.
8
Nanomaterials augmented bioeffects of ultrasound in cancer immunotherapy.
Mater Today Bio. 2023 Dec 22;24:100926. doi: 10.1016/j.mtbio.2023.100926. eCollection 2024 Feb.
9
ADCY7 mRNA Is a Novel Biomarker in HPV Infection and Cervical High-Grade Squamous Lesions or Higher.
Biomedicines. 2023 Mar 13;11(3):868. doi: 10.3390/biomedicines11030868.
10
T cell effects and mechanisms in immunotherapy of head and neck tumors.
Cell Commun Signal. 2023 Mar 5;21(1):49. doi: 10.1186/s12964-023-01070-y.

本文引用的文献

1
T-cell-receptor cross-recognition and strategies to select safe T-cell receptors for clinical translation.
Immunooncol Technol. 2019 Sep;2:1-10. doi: 10.1016/j.iotech.2019.06.003.
2
Reverse TCR repertoire evolution toward dominant low-affinity clones during chronic CMV infection.
Nat Immunol. 2020 Apr;21(4):434-441. doi: 10.1038/s41590-020-0628-2. Epub 2020 Mar 16.
3
Current Progress in CAR-T Cell Therapy for Solid Tumors.
Int J Biol Sci. 2019 Sep 7;15(12):2548-2560. doi: 10.7150/ijbs.34213. eCollection 2019.
4
5
MHC-II neoantigens shape tumour immunity and response to immunotherapy.
Nature. 2019 Oct;574(7780):696-701. doi: 10.1038/s41586-019-1671-8. Epub 2019 Oct 23.
6
Genetically engineered T cells for cancer immunotherapy.
Signal Transduct Target Ther. 2019 Sep 20;4:35. doi: 10.1038/s41392-019-0070-9. eCollection 2019.
7
UVB-Induced Tumor Heterogeneity Diminishes Immune Response in Melanoma.
Cell. 2019 Sep 19;179(1):219-235.e21. doi: 10.1016/j.cell.2019.08.032. Epub 2019 Sep 12.
8
T-Cell Receptor Gene Therapy for Human Papillomavirus-Associated Epithelial Cancers: A First-in-Human, Phase I/II Study.
J Clin Oncol. 2019 Oct 20;37(30):2759-2768. doi: 10.1200/JCO.18.02424. Epub 2019 Aug 13.
9
The Tumor Microenvironment Innately Modulates Cancer Progression.
Cancer Res. 2019 Sep 15;79(18):4557-4566. doi: 10.1158/0008-5472.CAN-18-3962. Epub 2019 Jul 26.
10
T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant.
Nat Med. 2019 Jul;25(7):1064-1072. doi: 10.1038/s41591-019-0472-9. Epub 2019 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验