Suppr超能文献

光合真核生物中新型的单结构域钠选择性电压门控通道。

A Novel Single-Domain Na-Selective Voltage-Gated Channel in Photosynthetic Eukaryotes.

机构信息

Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom.

Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD United Kingdom.

出版信息

Plant Physiol. 2020 Dec;184(4):1674-1683. doi: 10.1104/pp.20.00889. Epub 2020 Oct 1.

Abstract

The evolution of Na-selective four-domain voltage-gated channels (4D-Nas) in animals allowed rapid Na-dependent electrical excitability, and enabled the development of sophisticated systems for rapid and long-range signaling. While bacteria encode single-domain Na-selective voltage-gated channels (BacNa), they typically exhibit much slower kinetics than 4D-Nas, and are not thought to have crossed the prokaryote-eukaryote boundary. As such, the capacity for rapid Na-selective signaling is considered to be confined to certain animal taxa, and absent from photosynthetic eukaryotes. Certainly, in land plants, such as the Venus flytrap () where fast electrical excitability has been described, this is most likely based on fast anion channels. Here, we report a unique class of eukaryotic Na-selective, single-domain channels (EukCatBs) that are present primarily in haptophyte algae, including the ecologically important calcifying coccolithophores, and The EukCatB channels exhibit very rapid voltage-dependent activation and inactivation kinetics, and isoform-specific sensitivity to the highly selective 4D-Na blocker tetrodotoxin. The results demonstrate that the capacity for rapid Na-based signaling in eukaryotes is not restricted to animals or to the presence of 4D-Nas. The EukCatB channels therefore represent an independent evolution of fast Na-based electrical signaling in eukaryotes that likely contribute to sophisticated cellular control mechanisms operating on very short time scales in unicellular algae.

摘要

动物中 Na 选择性四域电压门控通道(4D-Nas)的进化允许快速的 Na 依赖性电兴奋性,并使快速和长距离信号传递的复杂系统得以发展。虽然细菌编码单域 Na 选择性电压门控通道(BacNa),但它们的动力学通常比 4D-Nas 慢得多,并且被认为没有跨越原核生物-真核生物边界。因此,快速 Na 选择性信号传递的能力被认为仅限于某些动物类群,而不存在于光合真核生物中。当然,在快速电兴奋性已被描述的陆地植物中,如捕蝇草 (),这最有可能基于快速阴离子通道。在这里,我们报告了一类独特的真核 Na 选择性单域通道(EukCatBs),它们主要存在于甲藻中,包括具有重要生态意义的钙化颗石藻和 。EukCatB 通道表现出非常快速的电压依赖性激活和失活动力学,并且同工型对高度选择性的 4D-Na 阻断剂河豚毒素具有特异性敏感性。结果表明,真核生物中快速 Na 基信号传递的能力不仅限于动物或 4D-Nas 的存在。EukCatB 通道因此代表了真核生物中快速 Na 基电信号传递的独立进化,这可能有助于单细胞藻类中在非常短的时间尺度上运行的复杂细胞控制机制。

相似文献

1
A Novel Single-Domain Na-Selective Voltage-Gated Channel in Photosynthetic Eukaryotes.
Plant Physiol. 2020 Dec;184(4):1674-1683. doi: 10.1104/pp.20.00889. Epub 2020 Oct 1.
2
Alternative Mechanisms for Fast Na/Ca Signaling in Eukaryotes via a Novel Class of Single-Domain Voltage-Gated Channels.
Curr Biol. 2019 May 6;29(9):1503-1511.e6. doi: 10.1016/j.cub.2019.03.041. Epub 2019 Apr 18.
3
A voltage-gated calcium-selective channel encoded by a sodium channel-like gene.
Neuron. 2004 Apr 8;42(1):101-12. doi: 10.1016/s0896-6273(04)00148-5.
4
Ancient origin of four-domain voltage-gated Na+ channels predates the divergence of animals and fungi.
J Membr Biol. 2012 Feb;245(2):117-23. doi: 10.1007/s00232-012-9415-9. Epub 2012 Jan 19.
5
Biophysical Adaptations of Prokaryotic Voltage-Gated Sodium Channels.
Curr Top Membr. 2016;78:39-64. doi: 10.1016/bs.ctm.2015.12.003. Epub 2016 Feb 1.
6
A complicated complex: Ion channels, voltage sensing, cell membranes and peptide inhibitors.
Neurosci Lett. 2018 Jul 13;679:35-47. doi: 10.1016/j.neulet.2018.04.030. Epub 2018 Apr 21.
8
Evolution of voltage-gated Na(+) channels.
J Exp Biol. 2002 Mar;205(Pt 5):575-84. doi: 10.1242/jeb.205.5.575.
9
Identification of functional voltage-gated Na(+) channels in cultured human pulmonary artery smooth muscle cells.
Pflugers Arch. 2005 Nov;451(2):380-387. doi: 10.1007/s00424-005-1478-3. Epub 2005 Jul 29.
10
The TTX metabolite 4,9-anhydro-TTX is a highly specific blocker of the Na(v1.6) voltage-dependent sodium channel.
Am J Physiol Cell Physiol. 2007 Aug;293(2):C783-9. doi: 10.1152/ajpcell.00070.2007. Epub 2007 May 23.

引用本文的文献

1
The chemistry of electrical signaling in sodium channels from bacteria and beyond.
Cell Chem Biol. 2024 Aug 15;31(8):1405-1421. doi: 10.1016/j.chembiol.2024.07.010.
2
Channels of Evolution: Unveiling Evolutionary Patterns in Diatom Ca Signalling.
Plants (Basel). 2024 Apr 26;13(9):1207. doi: 10.3390/plants13091207.
3
Structural mechanism of voltage-gated sodium channel slow inactivation.
Nat Commun. 2024 May 1;15(1):3691. doi: 10.1038/s41467-024-48125-3.
4
Resurgent current in context: Insights from the structure and function of Na and K channels.
Biophys J. 2024 Jul 16;123(14):1924-1941. doi: 10.1016/j.bpj.2023.12.016. Epub 2023 Dec 21.
5
The structural basis of divalent cation block in a tetrameric prokaryotic sodium channel.
Nat Commun. 2023 Jul 15;14(1):4236. doi: 10.1038/s41467-023-39987-0.
7
Structural Advances in Voltage-Gated Sodium Channels.
Front Pharmacol. 2022 Jun 3;13:908867. doi: 10.3389/fphar.2022.908867. eCollection 2022.
8
N-type fast inactivation of a eukaryotic voltage-gated sodium channel.
Nat Commun. 2022 May 17;13(1):2713. doi: 10.1038/s41467-022-30400-w.
9
Reduced H channel activity disrupts pH homeostasis and calcification in coccolithophores at low ocean pH.
Proc Natl Acad Sci U S A. 2022 May 10;119(19):e2118009119. doi: 10.1073/pnas.2118009119. Epub 2022 May 6.
10
The insights into calcium ion selectivity provided by ancestral prokaryotic ion channels.
Biophys Physicobiol. 2021 Nov 19;18:274-283. doi: 10.2142/biophysico.bppb-v18.033. eCollection 2021.

本文引用的文献

1
Alternative Mechanisms for Fast Na/Ca Signaling in Eukaryotes via a Novel Class of Single-Domain Voltage-Gated Channels.
Curr Biol. 2019 May 6;29(9):1503-1511.e6. doi: 10.1016/j.cub.2019.03.041. Epub 2019 Apr 18.
4
Structural basis for the modulation of voltage-gated sodium channels by animal toxins.
Science. 2018 Oct 19;362(6412). doi: 10.1126/science.aau2596. Epub 2018 Jul 26.
7
The Evolution of Calcium-Based Signalling in Plants.
Curr Biol. 2017 Jul 10;27(13):R667-R679. doi: 10.1016/j.cub.2017.05.020.
8
Sodium Channel Na1.8 Underlies TTX-Resistant Axonal Action Potential Conduction in Somatosensory C-Fibers of Distal Cutaneous Nerves.
J Neurosci. 2017 May 17;37(20):5204-5214. doi: 10.1523/JNEUROSCI.3799-16.2017. Epub 2017 Apr 27.
9
The chemical basis for electrical signaling.
Nat Chem Biol. 2017 Apr 13;13(5):455-463. doi: 10.1038/nchembio.2353.
10
Coccolithophore Cell Biology: Chalking Up Progress.
Ann Rev Mar Sci. 2017 Jan 3;9:283-310. doi: 10.1146/annurev-marine-122414-034032. Epub 2016 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验