Suppr超能文献

生育酚相互平衡是维持拟南芥在盐胁迫下生长的关键因素。

Tocopherols mutual balance is a key player for maintaining Arabidopsis thaliana growth under salt stress.

机构信息

The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Kraków, Poland.

Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.

出版信息

Plant Physiol Biochem. 2020 Nov;156:369-383. doi: 10.1016/j.plaphy.2020.09.008. Epub 2020 Sep 15.

Abstract

Enhanced channeling carbon through pathways: shikimate/chorismate, benzenoid-phenylopropanoid or 2-C-methyl-D-erythritol 4-phosphate (MEP) provides a multitude of secondary metabolites and cell wall components and allows plants response to environmental stresses. Through the biosynthetic pathways, different secondary metabolites, like tocopherols (TCs), are bind to mutual dependencies and metabolic loops, that are not yet fully understood. We compared, in parallel, the influence of α- and γ-TCs on metabolites involved in osmoprotective/antioxidative response, and physico-chemical modification of plasma membrane and cell wall. We studied Arabidopsis thaliana Columbia ecotype (WT), mutant vte1 deficient in α- and γ-TCs, mutant vte4 over-accumulating γ-TC instead of α-TC, and transgenic line tmt over-accumulating α-TC; exposed to NaCl. The results indicate that salt stress activates β-carboxylation processes in WT plants and in plants with altered TCs accumulation. In α-TC-deficient plants, NaCl causes ACC decrease, but does not change SA, whose concentration remains higher than in α-TC accumulating plants. α/γ-TCs contents influence carbohydrates, poliamines, phenolic (caffeic, ferrulic, cinnamic) acids accumulation patterns. Salinity results in increased detection of the LM5 galactan and LM19 homogalacturonan epitopes in α-TC accumulating plants, and the LM6 arabinan and MAC207 AGP epitopes in α-TC deficient mutants. Parallel, plants with altered TCs composition show decreased both the cell turgor and elastic modulus determined at the individual cell level. α-TC deficient plants reveal lower values of cell turgor and elastic modulus, but higher cell hydraulic conductivity than α-TC accumulating plants. Under salt stress, α-TC shows stronger regulatory effect than γ-TC through the impact on chloroplastic biosynthetic pathways and ROS/osmotic-modulating compounds.

摘要

通过途径增强碳的通道化

莽草酸/分支酸、苯丙烷类-苯丙素或 2-C-甲基-D-赤藓醇 4-磷酸(MEP)提供了多种次生代谢物和细胞壁成分,并允许植物对环境胁迫做出反应。通过生物合成途径,不同的次生代谢物,如生育酚(TCs),相互依赖和代谢循环相互绑定,这些循环尚未完全理解。我们平行比较了α-TC 和 γ-TC 对参与渗透保护/抗氧化反应的代谢物的影响,以及质膜和细胞壁的物理化学修饰。我们研究了拟南芥哥伦比亚生态型(WT)、缺乏α-TC 和 γ-TC 的 vte1 突变体、过度积累 γ-TC 而不是 α-TC 的 vte4 突变体和过度积累 α-TC 的 tmt 转基因系;暴露于 NaCl 下。结果表明,盐胁迫激活了 WT 植物和改变 TCs 积累的植物中的β-羧化过程。在缺乏 α-TC 的植物中,NaCl 导致 ACC 减少,但不改变 SA,其浓度仍高于积累 α-TC 的植物。α/γ-TCs 含量影响碳水化合物、多胺、酚(咖啡酸、阿魏酸、肉桂酸)酸的积累模式。盐度导致在积累 α-TC 的植物中检测到 LM5 半乳聚糖和 LM19 同源半乳糖醛酸聚糖的 LM6 阿拉伯聚糖和 MAC207 AGP 表位增加,在缺乏 α-TC 的突变体中检测到 LM6 阿拉伯聚糖和 MAC207 AGP 表位增加。同时,改变 TCs 组成的植物在个体细胞水平上表现出较低的细胞膨压和弹性模量。缺乏 α-TC 的植物比积累 α-TC 的植物具有较低的细胞膨压和弹性模量,但具有较高的细胞水力传导率。在盐胁迫下,α-TC 通过对质体生物合成途径和 ROS/渗透调节化合物的影响,表现出比 γ-TC 更强的调节作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验