Baek Sanghyun, Jang Jiyong, Cho Sung-Hwan, Choi Jong Min, Yoon Sungroh
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:188-191. doi: 10.1109/EMBC44109.2020.9175902.
Heart disease and stroke are the leading causes of death worldwide. High blood pressure greatly increases the risk of heart disease and stroke. Therefore, it is important to control blood pressure (BP) through regular BP monitoring; as such, it is necessary to develop a method to accurately and conveniently predict BP in a variety of settings. In this paper, we propose a method for predicting BP without feature extraction using fully convolutional neural networks (CNNs). We measured single multi-wave photoplethysmography (PPG) signals using a smartphone. To find an effective wavelength of PPG signals for the generation of accurate BP measurements, we investigated the BP prediction performance by changing the combinations of the input PPG signals. Our CNN-based BP predictor yielded the best performance metrics when a green PPG time signal was used in combination with an instantaneous frequency signal. This combination had an overall mean absolute error (MAE) of 5.28 and 4.92 mmHg for systolic and diastolic BP, respectively. Thus, our CNN-based approach achieved comparable results to other approaches that use a single PPG signal.
心脏病和中风是全球主要的死亡原因。高血压会大大增加患心脏病和中风的风险。因此,通过定期监测血压来控制血压很重要;因此,有必要开发一种在各种情况下准确且方便地预测血压的方法。在本文中,我们提出了一种使用全卷积神经网络(CNN)在不进行特征提取的情况下预测血压的方法。我们使用智能手机测量单波长多波光电容积脉搏波描记图(PPG)信号。为了找到用于生成准确血压测量值的PPG信号的有效波长,我们通过改变输入PPG信号的组合来研究血压预测性能。当绿色PPG时间信号与瞬时频率信号结合使用时,我们基于CNN的血压预测器产生了最佳性能指标。这种组合的收缩压和舒张压的总体平均绝对误差(MAE)分别为5.28和4.92 mmHg。因此,我们基于CNN的方法取得了与其他使用单个PPG信号的方法相当的结果。