Suppr超能文献

开发和验证一种深度学习算法,用于自动勾画宫颈癌放射治疗的临床靶区和危及器官。

Development and validation of a deep learning algorithm for auto-delineation of clinical target volume and organs at risk in cervical cancer radiotherapy.

机构信息

Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.

MedMind Technology Co, Ltd. Beijing, China.

出版信息

Radiother Oncol. 2020 Dec;153:172-179. doi: 10.1016/j.radonc.2020.09.060. Epub 2020 Oct 8.

Abstract

PURPOSE

The delineation of the clinical target volume (CTV) is a crucial, laborious and subjective step in cervical cancer radiotherapy. The aim of this study was to propose and evaluate a novel end-to-end convolutional neural network (CNN) for fully automatic and accurate CTV in cervical cancer.

METHODS

A total of 237 computed tomography (CT) scans of patients with locally advanced cervical cancer were collected and evaluated. A novel 2.5D CNN network, called DpnUNet, was developed for CTV delineation and further applied for CTV and organ-at-risk (OAR) delineation simultaneously. Comprehensive comparisons and experiments were performed. The mean Dice similarity coefficient (DSC), 95th percentile Hausdorff distance (95HD) and subjective evaluation were used to assess the performance of this method.

RESULTS

The mean DSC and 95HD values were 0.86 and 5.34 mm for the delineated CTVs. The clinical experts' subjective assessments showed that 90% of the predicted contours were acceptable for clinical usage. The mean DSC and 95HD values were 0.91 and 4.05 mm for bladder, 0.85 and 2.16 mm for bone marrow, 0.90 and 1.27 mm for left femoral head, 0.90 and 1.51 mm for right femoral head, 0.82 and 4.29 mm for rectum, 0.85 and 4.35 mm for bowel bag, 0.82 and 4.96 mm for spinal cord respectively. The average delineation time for one patient's CT images was within 15 seconds.

CONCLUSION

The experimental results demonstrate that the CTV and OARs delineated for cervical cancer by DpnUNet was in close agreement with the ground truth. DpnUNet could significantly reduce the radiation oncologists' contouring time.

摘要

目的

在宫颈癌放射治疗中,临床靶区(CTV)的勾画是一个关键、费力且主观的步骤。本研究旨在提出并评估一种新的端到端卷积神经网络(CNN),用于宫颈癌的完全自动和准确 CTV 勾画。

方法

共收集并评估了 237 例局部晚期宫颈癌患者的计算机断层扫描(CT)图像。开发了一种新的 2.5D CNN 网络,称为 DpnUNet,用于 CTV 勾画,并进一步应用于 CTV 和危及器官(OAR)的同时勾画。进行了全面的比较和实验。使用平均 Dice 相似系数(DSC)、95%Hausdorff 距离(95HD)和主观评估来评估该方法的性能。

结果

勾画的 CTV 的平均 DSC 和 95HD 值分别为 0.86 和 5.34mm。临床专家的主观评估表明,90%的预测轮廓可用于临床应用。膀胱的平均 DSC 和 95HD 值分别为 0.91 和 4.05mm,骨髓为 0.85 和 2.16mm,左股骨头为 0.90 和 1.27mm,右股骨头为 0.90 和 1.51mm,直肠为 0.82 和 4.29mm,肠袋为 0.85 和 4.35mm,脊髓为 0.82 和 4.96mm。勾画一个患者 CT 图像的平均时间在 15 秒以内。

结论

实验结果表明,DpnUNet 勾画的宫颈癌 CTV 和 OAR 与真实值非常吻合。DpnUNet 可以显著减少放射肿瘤学家的勾画时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验