Suppr超能文献

从血液和组织中富集和定量检测 PIK3CA 突变。

PIK3CA mutation enrichment and quantitation from blood and tissue.

机构信息

Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK.

Infection Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, EH164SB, UK.

出版信息

Sci Rep. 2020 Oct 13;10(1):17082. doi: 10.1038/s41598-020-74086-w.

Abstract

PIK3CA is one of the two most frequently mutated genes in breast cancers, occurring in 30-40% of cases. Four frequent 'hotspot' PIK3CA mutations (E542K, E545K, H1047R and H1047L) account for 80-90% of all PIK3CA mutations in human malignancies and represent predictive biomarkers. Here we describe a PIK3CA mutation specific nuclease-based enrichment assay, which combined with a low-cost real-time qPCR detection method, enhances assay detection sensitivity from 5% for E542K and 10% for E545K to 0.6%, and from 5% for H1047R to 0.3%. Moreover, we present a novel flexible prediction method to calculate initial mutant allele frequency in tissue biopsy and blood samples with low mutant fraction. These advancements demonstrated a quick, accurate and simple detection and quantitation of PIK3CA mutations in two breast cancer cohorts (first cohort n = 22, second cohort n = 25). Hence this simple, versatile and informative workflow could be applicable for routine diagnostic testing where quantitative results are essential, e.g. disease monitoring subject to validation in a substantial future study.

摘要

PIK3CA 是乳腺癌中最常发生突变的两个基因之一,约占 30-40%的病例。四个常见的“热点”PIK3CA 突变(E542K、E545K、H1047R 和 H1047L)占人类恶性肿瘤中所有 PIK3CA 突变的 80-90%,代表了预测性生物标志物。在这里,我们描述了一种基于 PIK3CA 突变的核酸酶富集检测方法,该方法与低成本实时 qPCR 检测方法相结合,将检测灵敏度从 E542K 的 5%和 E545K 的 10%提高到 0.6%,从 H1047R 的 5%提高到 0.3%。此外,我们提出了一种新的灵活预测方法,用于计算组织活检和低突变分数血液样本中的初始突变等位基因频率。这些进展在两个乳腺癌队列(第一队列 n=22,第二队列 n=25)中展示了 PIK3CA 突变的快速、准确和简单检测和定量。因此,这种简单、多功能和信息丰富的工作流程可适用于需要定量结果的常规诊断测试,例如需要在未来进行大量验证的疾病监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验