Suppr超能文献

癌症临床试验中的反应评估影像学。

Imaging for Response Assessment in Cancer Clinical Trials.

机构信息

Department of Radiology, University of Alabama at Birmingham, Birmingham, AL; Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL.

Department of Radiology, University of Alabama at Birmingham, Birmingham, AL.

出版信息

Semin Nucl Med. 2020 Nov;50(6):488-504. doi: 10.1053/j.semnuclmed.2020.05.001. Epub 2020 Jun 10.

Abstract

The use of biomarkers is integral to the routine management of cancer patients, including diagnosis of disease, clinical staging and response to therapeutic intervention. Advanced imaging metrics with computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) are used to assess response during new drug development and in cancer research for predictive metrics of response. Key components and challenges to identifying an appropriate imaging biomarker are selection of integral vs integrated biomarkers, choosing an appropriate endpoint and modality, and standardization of the imaging biomarkers for cooperative and multicenter trials. Imaging biomarkers lean on the original proposed quantified metrics derived from imaging such as tumor size or longest dimension, with the most commonly implemented metrics in clinical trials coming from the Response Evaluation Criteria in Solid Tumors (RECIST) criteria, and then adapted versions such as immune-RECIST (iRECIST) and Positron Emission Tomography Response Criteria in Solid Tumors (PERCIST) for immunotherapy response and PET imaging, respectively. There have been many widely adopted biomarkers in clinical trials derived from MRI including metrics that describe cellularity and vascularity from diffusion-weighted (DW)-MRI apparent diffusion coefficient (ADC) and Dynamic Susceptibility Contrast (DSC) or dynamic contrast enhanced (DCE)-MRI (K, relative cerebral blood volume (rCBV)), respectively. Furthermore, Fluorodexoyglucose (FDG), fluorothymidine (FLT), and fluoromisonidazole (FMISO)-PET imaging, which describe molecular markers of glucose metabolism, proliferation and hypoxia have been implemented into various cancer types to assess therapeutic response to a wide variety of targeted- and chemotherapies. Recently, there have been many functional and molecular novel imaging biomarkers that are being developed that are rapidly being integrated into clinical trials (with anticipation of being implemented into clinical workflow in the future), such as artificial intelligence (AI) and machine learning computational strategies, antibody and peptide specific molecular imaging, and advanced diffusion MRI. These include prostate-specific membrane antigen (PSMA) and trastuzumab-PET, vascular tumor burden extracted from contrast-enhanced CT, diffusion kurtosis imaging, and CD8 or Granzyme B PET imaging. Further excitement surrounds theranostic procedures such as the combination of Ga/In- and Lu-DOTATATE to use integral biomarkers to direct care and personalize therapy. However, there are many challenges in the implementation of imaging biomarkers that remains, including understand the accuracy, repeatability and reproducibility of both acquisition and analysis of these imaging biomarkers. Despite the challenges associated with the biological and technical validation of novel imaging biomarkers, a distinct roadmap has been created that is being implemented into many clinical trials to advance the development and implementation to create specific and sensitive novel imaging biomarkers of therapeutic response to continue to transform medical oncology.

摘要

生物标志物的应用是癌症患者常规管理的重要组成部分,包括疾病诊断、临床分期和治疗干预反应。计算机断层扫描 (CT)、磁共振成像 (MRI) 和正电子发射断层扫描 (PET) 等先进的影像学指标用于评估新药开发过程中的反应以及癌症研究中的反应预测指标。确定合适的影像学生物标志物的关键组成部分和挑战包括选择整体生物标志物与综合生物标志物、选择适当的终点和方式,以及为合作和多中心试验标准化影像学生物标志物。影像学生物标志物依赖于最初从影像学中提出的量化指标,例如肿瘤大小或最长径,临床试验中最常用的指标来自实体瘤反应评估标准 (RECIST) 标准,然后分别为免疫治疗反应和 PET 成像改编免疫 RECIST (iRECIST) 和实体瘤正电子发射断层扫描反应标准 (PERCIST)。临床试验中已经有许多广泛采用的源自 MRI 的生物标志物,包括描述弥散加权 (DW)-MRI 表观扩散系数 (ADC) 和动态对比增强 (DCE)-MRI 中的细胞和血管的指标 (K,相对脑血容量 (rCBV))。此外,氟脱氧葡萄糖 (FDG)、氟胸苷 (FLT) 和氟米索硝唑 (FMISO)-PET 成像描述了葡萄糖代谢、增殖和缺氧的分子标志物,已应用于各种癌症类型,以评估各种靶向和化疗的治疗反应。最近,已经开发了许多功能和分子新型影像学生物标志物,它们正在迅速被纳入临床试验(预计未来将被纳入临床工作流程),例如人工智能 (AI) 和机器学习计算策略、抗体和肽特异性分子成像以及先进的弥散 MRI。这些包括前列腺特异性膜抗原 (PSMA) 和曲妥珠单抗-PET、从增强 CT 提取的血管肿瘤负担、弥散峰度成像以及 CD8 或 Granzyme B-PET 成像。进一步令人兴奋的是治疗诊断程序,例如镓/铟和 Lu-DOTATATE 的组合,以使用整体生物标志物指导护理和个性化治疗。然而,在实施影像学生物标志物方面仍然存在许多挑战,包括了解这些影像学生物标志物的采集和分析的准确性、重复性和可重复性。尽管与新型影像学生物标志物的生物学和技术验证相关的挑战,但已经创建了一个明确的路线图,该路线图正在许多临床试验中实施,以推进治疗反应的特定和敏感的新型影像学生物标志物的开发和实施,继续推动肿瘤医学的发展。

相似文献

1
Imaging for Response Assessment in Cancer Clinical Trials.
Semin Nucl Med. 2020 Nov;50(6):488-504. doi: 10.1053/j.semnuclmed.2020.05.001. Epub 2020 Jun 10.
2
Imaging biomarkers guided anti-angiogenic therapy for malignant gliomas.
Neuroimage Clin. 2018 Jul 5;20:51-60. doi: 10.1016/j.nicl.2018.07.001. eCollection 2018.
3
More advantages in detecting bone and soft tissue metastases from prostate cancer using F-PSMA PET/CT.
Hell J Nucl Med. 2019 Jan-Apr;22(1):6-9. doi: 10.1967/s002449910952. Epub 2019 Mar 7.
4
From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors.
J Nucl Med. 2009 May;50 Suppl 1(Suppl 1):122S-50S. doi: 10.2967/jnumed.108.057307.
5
The lung cancers: staging and response, CT, F-FDG PET/CT, MRI, DWI: review and new perspectives.
Br J Radiol. 2023 Aug;96(1148):20220339. doi: 10.1259/bjr.20220339. Epub 2023 May 17.
6
Functional and molecular imaging in cancer drug development.
Chin Clin Oncol. 2014 Jun;3(2):17. doi: 10.3978/j.issn.2304-3865.2014.05.05.
8
Measurement Repeatability of F-FDG PET/CT Versus F-FDG PET/MRI in Solid Tumors of the Pelvis.
J Nucl Med. 2019 Aug;60(8):1080-1086. doi: 10.2967/jnumed.118.218735. Epub 2019 Feb 7.
9
Risk of recurrence after chemoradiotherapy identified by multimodal MRI and 18F-FDG-PET/CT in locally advanced cervical cancer.
Radiother Oncol. 2022 Nov;176:17-24. doi: 10.1016/j.radonc.2022.09.002. Epub 2022 Sep 14.

引用本文的文献

1
Current Approaches of Nuclear Molecular Imaging in Breast Cancer.
Cancers (Basel). 2025 Jun 23;17(13):2105. doi: 10.3390/cancers17132105.
2
Potential mechanisms and clinical applications of static magnetic field therapy in glioma.
Front Neurol. 2025 Jun 25;16:1594874. doi: 10.3389/fneur.2025.1594874. eCollection 2025.
3
Harnessing Biomarker Activatable Probes for Early Stratification and Timely Assessment of Therapeutic Efficacy in Cancer.
Exploration (Beijing). 2025 Mar 6;5(3):20240037. doi: 10.1002/EXP.20240037. eCollection 2025 Jun.
8
The Value of MRI and Radiomics for the Diagnostic Evaluation of Thyroid-Associated Ophthalmopathy.
Diagnostics (Basel). 2025 Feb 6;15(3):388. doi: 10.3390/diagnostics15030388.
9
In Vitro MRS of Cells Treated with Trastuzumab at 1.5 Tesla.
Int J Mol Sci. 2024 Jan 31;25(3):1719. doi: 10.3390/ijms25031719.

本文引用的文献

3
Advances in Immuno-PET for the Detection of Cancer and Assessment of Response to Therapy.
Curr Med Chem. 2021;28(4):647-672. doi: 10.2174/0929867327666200128102958.
5
Molecular Imaging in Breast Cancer.
Nucl Med Mol Imaging. 2019 Oct;53(5):313-319. doi: 10.1007/s13139-019-00614-w. Epub 2019 Oct 16.
6
Toward F-Labeled Theranostics: A Single Agent that Can Be Labeled with F, Cu, or Lu.
Chembiochem. 2020 Apr 1;21(7):943-947. doi: 10.1002/cbic.201900632. Epub 2019 Dec 4.
8
Current and Future Imaging Methods for Evaluating Response to Immunotherapy in Neuro-Oncology.
Theranostics. 2019 Jul 9;9(17):5085-5104. doi: 10.7150/thno.34415. eCollection 2019.
10
New parameters of ultrafast dynamic contrast-enhanced breast MRI using compressed sensing.
J Magn Reson Imaging. 2020 Jan;51(1):164-174. doi: 10.1002/jmri.26838. Epub 2019 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验