Suppr超能文献

TGF-β 抑制癌症的 2 型免疫。

TGF-β suppresses type 2 immunity to cancer.

机构信息

Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Immunogenomics and Precision Oncology Platform (IPOP), Memorial Sloan Kettering Cancer Center, New York, NY, USA.

出版信息

Nature. 2020 Nov;587(7832):115-120. doi: 10.1038/s41586-020-2836-1. Epub 2020 Oct 21.

Abstract

The immune system uses two distinct defence strategies against infections: microbe-directed pathogen destruction characterized by type 1 immunity, and host-directed pathogen containment exemplified by type 2 immunity in induction of tissue repair. Similar to infectious diseases, cancer progresses with self-propagating cancer cells inflicting host-tissue damage. The immunological mechanisms of cancer cell destruction are well defined, but whether immune-mediated cancer cell containment can be induced remains poorly understood. Here we show that depletion of transforming growth factor-β receptor 2 (TGFBR2) in CD4 T cells, but not CD8 T cells, halts cancer progression as a result of tissue healing and remodelling of the blood vasculature, causing cancer cell hypoxia and death in distant avascular regions. Notably, the host-directed protective response is dependent on the T helper 2 cytokine interleukin-4 (IL-4), but not the T helper 1 cytokine interferon-γ (IFN-γ). Thus, type 2 immunity can be mobilized as an effective tissue-level defence mechanism against cancer.

摘要

免疫系统利用两种截然不同的防御策略来对抗感染

以 1 型免疫为特征的针对微生物的病原体破坏,以及以 2 型免疫为代表的诱导组织修复的针对宿主的病原体控制。与传染病类似,癌症的进展伴随着自我传播的癌细胞对宿主组织造成损伤。癌症细胞破坏的免疫机制已经得到很好的定义,但免疫介导的癌症细胞控制是否可以被诱导仍然知之甚少。在这里,我们表明,CD4 T 细胞中转化生长因子-β受体 2 (TGFBR2) 的耗竭会导致组织愈合和血管重塑,从而阻止癌症的进展,导致远离无血管区域的癌症细胞缺氧和死亡。值得注意的是,这种宿主定向的保护反应依赖于辅助性 T 细胞 2 型细胞因子白细胞介素-4 (IL-4),而不是辅助性 T 细胞 1 型细胞因子干扰素-γ (IFN-γ)。因此,2 型免疫可以被动员为一种针对癌症的有效的组织水平防御机制。

相似文献

1
TGF-β suppresses type 2 immunity to cancer.
Nature. 2020 Nov;587(7832):115-120. doi: 10.1038/s41586-020-2836-1. Epub 2020 Oct 21.
2
Cancer immunotherapy via targeted TGF-β signalling blockade in T cells.
Nature. 2020 Nov;587(7832):121-125. doi: 10.1038/s41586-020-2850-3. Epub 2020 Oct 21.
5
Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-β pathway.
J Exp Med. 2010 Oct 25;207(11):2331-41. doi: 10.1084/jem.20101074. Epub 2010 Sep 27.
8
Tumor-derived TGF-β inhibits mitochondrial respiration to suppress IFN-γ production by human CD4 T cells.
Sci Signal. 2019 Sep 17;12(599):eaav3334. doi: 10.1126/scisignal.aav3334.
9
The immunoregulatory effects of gangliosides involve immune deviation favoring type-2 T cell responses.
J Leukoc Biol. 2006 Mar;79(3):586-95. doi: 10.1189/jlb.0705395. Epub 2006 Jan 13.
10
Suppression of allergic airway inflammation in a mouse model by Der p2 recombined BCG.
Immunology. 2009 Sep;128(1 Suppl):e343-52. doi: 10.1111/j.1365-2567.2008.02970.x. Epub 2008 Dec 22.

引用本文的文献

2
CRISPR/Cas9 in colorectal cancer: Revolutionizing precision oncology through genome editing and targeted therapeutics.
Iran J Basic Med Sci. 2025;28(10):1279-1300. doi: 10.22038/ijbms.2025.87531.18902.
3
Lymph-node-derived stem-like but not tumor-tissue-resident CD8 T cells fuel anticancer immunity.
Nat Immunol. 2025 Aug;26(8):1367-1383. doi: 10.1038/s41590-025-02219-2. Epub 2025 Jul 29.
4
Distinct evolutionary patterns of tumour-immune escape and elimination determined by extracellular matrix architectures.
J R Soc Interface. 2025 Jul;22(228):20250116. doi: 10.1098/rsif.2025.0116. Epub 2025 Jul 9.
5
6
Natural anti-cancer products: insights from herbal medicine.
Chin Med. 2025 Jun 9;20(1):82. doi: 10.1186/s13020-025-01124-y.
9
CD4 anti-TGF-β CAR T cells and CD8 conventional CAR T cells exhibit synergistic antitumor effects.
Cell Rep Med. 2025 Mar 18;6(3):102020. doi: 10.1016/j.xcrm.2025.102020.
10
T lymphocyte-based immune response and therapy in hepatocellular carcinoma: focus on TILs and CAR-T cells.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Mar 18. doi: 10.1007/s00210-025-04035-9.

本文引用的文献

1
A conserved dendritic-cell regulatory program limits antitumour immunity.
Nature. 2020 Apr;580(7802):257-262. doi: 10.1038/s41586-020-2134-y. Epub 2020 Mar 25.
2
Transforming Growth Factor-β Signaling in Immunity and Cancer.
Immunity. 2019 Apr 16;50(4):924-940. doi: 10.1016/j.immuni.2019.03.024.
3
Genome-wide CRISPR Screens in T Helper Cells Reveal Pervasive Crosstalk between Activation and Differentiation.
Cell. 2019 Feb 7;176(4):882-896.e18. doi: 10.1016/j.cell.2018.11.044. Epub 2019 Jan 10.
4
PD-L1 in tumor microenvironment mediates resistance to oncolytic immunotherapy.
J Clin Invest. 2018 Nov 1;128(11):5184. doi: 10.1172/JCI125039. Epub 2018 Oct 2.
6
Unlocking the Complexities of Tumor-Associated Regulatory T Cells.
J Immunol. 2018 Jan 15;200(2):415-421. doi: 10.4049/jimmunol.1701188.
7
Foxp3-independent mechanism by which TGF-β controls peripheral T cell tolerance.
Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):E7536-E7544. doi: 10.1073/pnas.1706356114. Epub 2017 Aug 21.
8
Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 Checkpoint Blockade.
Cell. 2017 Sep 7;170(6):1120-1133.e17. doi: 10.1016/j.cell.2017.07.024. Epub 2017 Aug 10.
9
Tumour ischaemia by interferon-γ resembles physiological blood vessel regression.
Nature. 2017 May 4;545(7652):98-102. doi: 10.1038/nature22311. Epub 2017 Apr 26.
10
Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming.
Nature. 2017 Apr 13;544(7649):250-254. doi: 10.1038/nature21724. Epub 2017 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验