Suppr超能文献

一种比较 R1 值定量分析和皮质厚度在识别人类大脑皮质年龄、寿命动态变化和疾病状态的方法。

A Comparison of Quantitative R1 and Cortical Thickness in Identifying Age, Lifespan Dynamics, and Disease States of the Human Cortex.

机构信息

The Hebrew University of Jerusalem, The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.

Graduate School of Education, Stanford University, Stanford, CA, USA.

出版信息

Cereb Cortex. 2021 Jan 5;31(2):1211-1226. doi: 10.1093/cercor/bhaa288.

Abstract

Brain development and aging are complex processes that unfold in multiple brain regions simultaneously. Recently, models of brain age prediction have aroused great interest, as these models can potentially help to understand neurological diseases and elucidate basic neurobiological mechanisms. We test whether quantitative magnetic resonance imaging can contribute to such age prediction models. Using R1, the longitudinal rate of relaxation, we explore lifespan dynamics in cortical gray matter. We compare R1 with cortical thickness, a well-established biomarker of brain development and aging. Using 160 healthy individuals (6-81 years old), we found that R1 and cortical thickness predicted age similarly, but the regions contributing to the prediction differed. Next, we characterized R1 development and aging dynamics. Compared with anterior regions, in posterior regions we found an earlier R1 peak but a steeper postpeak decline. We replicate these findings: firstly, we tested a subset (N = 10) of the original dataset for whom we had additional scans at a lower resolution; and second, we verified the results on an independent dataset (N = 34). Finally, we compared the age prediction models on a subset of 10 patients with multiple sclerosis. The patients are predicted older than their chronological age using R1 but not with cortical thickness.

摘要

大脑的发育和衰老过程是复杂的,同时在多个脑区展开。最近,大脑年龄预测模型引起了极大的兴趣,因为这些模型可能有助于理解神经退行性疾病并阐明基本的神经生物学机制。我们测试了定量磁共振成像是否可以为这些年龄预测模型做出贡献。我们使用 R1,即纵向弛豫率,来探索皮质灰质的寿命动态。我们将 R1 与皮质厚度进行了比较,后者是大脑发育和衰老的一个成熟生物标志物。使用 160 名健康个体(6-81 岁),我们发现 R1 和皮质厚度对年龄的预测相似,但预测所涉及的区域不同。接下来,我们对 R1 的发育和衰老动态进行了特征描述。与前区相比,我们在后区发现了更早的 R1 峰值,但峰值后的下降更陡峭。我们复制了这些发现:首先,我们对原始数据集的一个子集(N=10)进行了测试,这些人在较低分辨率下进行了额外的扫描;其次,我们在一个独立的数据集(N=34)上验证了结果。最后,我们在 10 名多发性硬化症患者的子集中比较了年龄预测模型。使用 R1 预测这些患者比他们的实际年龄大,但使用皮质厚度则不然。

相似文献

2
Education and age-related differences in cortical thickness and volume across the lifespan.
Neurobiol Aging. 2021 Jun;102:102-110. doi: 10.1016/j.neurobiolaging.2020.10.034. Epub 2020 Nov 17.
3
Multiparameter MRI quantification of microstructural tissue alterations in multiple sclerosis.
Neuroimage Clin. 2019;23:101879. doi: 10.1016/j.nicl.2019.101879. Epub 2019 May 29.
4
Patterns of cortical grey matter thickness reduction in multiple sclerosis.
Brain Behav. 2021 Apr;11(4):e02050. doi: 10.1002/brb3.2050. Epub 2021 Jan 27.
5
Quantitative measurement of macromolecular tissue properties in white and gray matter in healthy aging and amnestic MCI.
Neuroimage. 2021 Aug 15;237:118161. doi: 10.1016/j.neuroimage.2021.118161. Epub 2021 May 15.
6
Ultra-high field MTR and qR2* differentiates subpial cortical lesions from normal-appearing gray matter in multiple sclerosis.
Mult Scler. 2016 Sep;22(10):1306-14. doi: 10.1177/1352458515620499. Epub 2015 Dec 16.
7
Quantitative magnetic resonance imaging biomarkers for cortical pathology in multiple sclerosis at 7 T.
NMR Biomed. 2023 Mar;36(3):e4847. doi: 10.1002/nbm.4847. Epub 2022 Nov 14.
8
9
Increased cortical grey matter lesion detection in multiple sclerosis with 7 T MRI: a post-mortem verification study.
Brain. 2016 May;139(Pt 5):1472-81. doi: 10.1093/brain/aww037. Epub 2016 Mar 8.
10
Gray matter trophism, cognitive impairment, and depression in patients with multiple sclerosis.
Mult Scler. 2017 Dec;23(14):1864-1874. doi: 10.1177/1352458517692886. Epub 2017 Feb 7.

引用本文的文献

1
Longitudinal reproducibility of brain and spinal cord quantitative MRI biomarkers.
Imaging Neurosci (Camb). 2025 Jan 2;3. doi: 10.1162/imag_a_00409. eCollection 2025.
2
Normative trajectories of R , R *, and magnetic susceptibility in basal ganglia on healthy ageing.
Imaging Neurosci (Camb). 2025 Feb 3;3. doi: 10.1162/imag_a_00456. eCollection 2025.
3
Age- and Sex-Specific Patterns in Adult Brain Network Segregation.
Hum Brain Mapp. 2025 Mar;46(4):e70169. doi: 10.1002/hbm.70169.
4
T1 relaxation time is prolonged in healthy aging: a whole brain study.
Turk J Med Sci. 2023 Jun;53(3):675-684. doi: 10.55730/1300-0144.5630. Epub 2023 Jun 19.
5
How does the brain age in individuals with multiple sclerosis? A systematic review.
Front Neurol. 2023 Jun 30;14:1207626. doi: 10.3389/fneur.2023.1207626. eCollection 2023.
6
Local Brain-Age: A U-Net Model.
Front Aging Neurosci. 2021 Dec 13;13:761954. doi: 10.3389/fnagi.2021.761954. eCollection 2021.
7
Post mortem brain temperature and its influence on quantitative MRI of the brain.
MAGMA. 2022 Jun;35(3):375-387. doi: 10.1007/s10334-021-00971-8. Epub 2021 Oct 29.
8
Quantitative measurement of macromolecular tissue properties in white and gray matter in healthy aging and amnestic MCI.
Neuroimage. 2021 Aug 15;237:118161. doi: 10.1016/j.neuroimage.2021.118161. Epub 2021 May 15.

本文引用的文献

1
Multidimensional analysis and detection of informative features in human brain white matter.
PLoS Comput Biol. 2021 Jun 28;17(6):e1009136. doi: 10.1371/journal.pcbi.1009136. eCollection 2021 Jun.
2
An automated machine learning approach to predict brain age from cortical anatomical measures.
Hum Brain Mapp. 2020 Sep;41(13):3555-3566. doi: 10.1002/hbm.25028. Epub 2020 May 16.
3
Role of T1 mapping to evaluate brain aging in a healthy population.
Clin Imaging. 2020 Jan;59(1):56-60. doi: 10.1016/j.clinimag.2019.09.005. Epub 2019 Nov 11.
4
Adult brain aging investigated using BMC-mcDESPOT-based myelin water fraction imaging.
Neurobiol Aging. 2020 Jan;85:131-139. doi: 10.1016/j.neurobiolaging.2019.10.003. Epub 2019 Oct 14.
5
Quantitative age-dependent differences in human brainstem myelination assessed using high-resolution magnetic resonance mapping.
Neuroimage. 2020 Feb 1;206:116307. doi: 10.1016/j.neuroimage.2019.116307. Epub 2019 Oct 24.
6
Common brain disorders are associated with heritable patterns of apparent aging of the brain.
Nat Neurosci. 2019 Oct;22(10):1617-1623. doi: 10.1038/s41593-019-0471-7. Epub 2019 Sep 24.
7
Apparent thinning of human visual cortex during childhood is associated with myelination.
Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20750-20759. doi: 10.1073/pnas.1904931116. Epub 2019 Sep 23.
9
Multiparameter MRI quantification of microstructural tissue alterations in multiple sclerosis.
Neuroimage Clin. 2019;23:101879. doi: 10.1016/j.nicl.2019.101879. Epub 2019 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验