Suppr超能文献

消费者对沿海湿地生态系统碳循环的调节。

Consumer regulation of the carbon cycle in coastal wetland ecosystems.

机构信息

Coastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China.

Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, RI 02516, USA.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2020 Dec 21;375(1814):20190451. doi: 10.1098/rstb.2019.0451. Epub 2020 Nov 2.

Abstract

Despite escalating anthropogenic alteration of food webs, how the carbon cycle in ecosystems is regulated by food web processes remains poorly understood. We quantitatively synthesize the effects of consumers (herbivores, omnivores and carnivores) on the carbon cycle of coastal wetland ecosystems, 'blue carbon' ecosystems that store the greatest amount of carbon per unit area among all ecosystems. Our results reveal that consumers strongly affect many processes of the carbon cycle. Herbivores, for example, generally reduce carbon absorption and carbon stocks (e.g. aboveground plant carbon by 53% and aboveground net primary production by 23%) but may promote some carbon emission processes (e.g. litter decomposition by 32%). The average strengths of these effects are comparable with, or even times higher than, changes driven by temperature, precipitation, nitrogen input, CO concentration, and plant invasions. Furthermore, consumer effects appear to be stronger on aboveground than belowground carbon processes and vary markedly with trophic level, body size, thermal regulation strategy and feeding type. Despite important knowledge gaps, our results highlight the powerful impacts of consumers on the carbon cycle and call for the incorporation of consumer control into Earth system models that predict anthropogenic climate change and into management strategies of Earth's carbon stocks. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.

摘要

尽管人类对食物网的干预在不断升级,但生态系统中的碳循环是如何被食物网过程所调节的,这一点仍未被充分理解。我们定量综合了消费者(草食动物、杂食动物和肉食动物)对沿海湿地生态系统碳循环的影响,这些生态系统是所有生态系统中单位面积碳储量最大的“蓝碳”生态系统。我们的研究结果表明,消费者强烈影响着碳循环的许多过程。例如,草食动物通常会减少碳吸收和碳储量(例如,地上植物碳减少 53%,地上净初级生产力减少 23%),但可能会促进一些碳排放过程(例如,凋落物分解增加 32%)。这些影响的平均强度与温度、降水、氮输入、CO 浓度和植物入侵等因素所驱动的变化相当,甚至更高。此外,消费者的影响似乎在上地碳过程中比下地碳过程更强,并且随营养水平、体型、热调节策略和摄食类型而显著变化。尽管存在重要的知识空白,但我们的研究结果强调了消费者对碳循环的强大影响,并呼吁将消费者控制纳入预测人为气候变化的地球系统模型,以及纳入地球碳储量的管理策略中。本文是主题为“海洋保护的综合研究视角”的一部分。

相似文献

1
Consumer regulation of the carbon cycle in coastal wetland ecosystems.
Philos Trans R Soc Lond B Biol Sci. 2020 Dec 21;375(1814):20190451. doi: 10.1098/rstb.2019.0451. Epub 2020 Nov 2.
2
Phragmites australis meets Suaeda salsa on the "red beach": Effects of an ecosystem engineer on salt-marsh litter decomposition.
Sci Total Environ. 2019 Nov 25;693:133477. doi: 10.1016/j.scitotenv.2019.07.283. Epub 2019 Jul 18.
3
Climate and plant controls on soil organic matter in coastal wetlands.
Glob Chang Biol. 2018 Nov;24(11):5361-5379. doi: 10.1111/gcb.14376. Epub 2018 Jul 29.
5
Responses of seagrass to anthropogenic and natural disturbances do not equally translate to its consumers.
Glob Chang Biol. 2015 Nov;21(11):4021-30. doi: 10.1111/gcb.13024. Epub 2015 Sep 23.
6
Carbon budgets of wetland ecosystems in China.
Glob Chang Biol. 2019 Jun;25(6):2061-2076. doi: 10.1111/gcb.14621. Epub 2019 Apr 7.
7
Modeling strategies and data needs for representing coastal wetland vegetation in land surface models.
New Phytol. 2023 May;238(3):938-951. doi: 10.1111/nph.18760. Epub 2023 Feb 14.
9
Consumer trophic diversity as a fundamental mechanism linking predation and ecosystem functioning.
J Anim Ecol. 2012 Nov;81(6):1146-1153. doi: 10.1111/j.1365-2656.2012.02003.x. Epub 2012 Jun 7.
10
Top-down control of carbon sequestration: grazing affects microbial structure and function in salt marsh soils.
Ecol Appl. 2017 Jul;27(5):1435-1450. doi: 10.1002/eap.1534. Epub 2017 May 17.

引用本文的文献

1
Global dataset of soil organic carbon in tidal marshes.
Sci Data. 2023 Nov 11;10(1):797. doi: 10.1038/s41597-023-02633-x.
2
Integrative research perspectives on marine conservation.
Philos Trans R Soc Lond B Biol Sci. 2020 Dec 21;375(1814):20190444. doi: 10.1098/rstb.2019.0444. Epub 2020 Nov 2.

本文引用的文献

1
A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change.
Nat Ecol Evol. 2019 Sep;3(9):1309-1320. doi: 10.1038/s41559-019-0958-3. Epub 2019 Aug 19.
2
Ecosystem Function and Services of Aquatic Predators in the Anthropocene.
Trends Ecol Evol. 2019 Apr;34(4):369-383. doi: 10.1016/j.tree.2019.01.005. Epub 2019 Mar 8.
3
Top-down control of carbon sequestration: grazing affects microbial structure and function in salt marsh soils.
Ecol Appl. 2017 Jul;27(5):1435-1450. doi: 10.1002/eap.1534. Epub 2017 May 17.
4
Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis.
Glob Chang Biol. 2017 Mar;23(3):1167-1179. doi: 10.1111/gcb.13431. Epub 2016 Sep 22.
7
Recovery of ecosystem carbon fluxes and storage from herbivory.
Biogeochemistry. 2011;106(3):357-370. doi: 10.1007/s10533-010-9516-4. Epub 2011 Jan 7.
8
Biogeographic consequences of nutrient enrichment for plant-herbivore interactions in coastal wetlands.
Ecol Lett. 2015 May;18(5):462-71. doi: 10.1111/ele.12429. Epub 2015 Apr 5.
9
Predictability of the terrestrial carbon cycle.
Glob Chang Biol. 2015 May;21(5):1737-51. doi: 10.1111/gcb.12766. Epub 2014 Dec 3.
10
Indirect human impacts reverse centuries of carbon sequestration and salt marsh accretion.
PLoS One. 2014 Mar 27;9(3):e93296. doi: 10.1371/journal.pone.0093296. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验