Suppr超能文献

用于意大利新冠疫情传播的时变SIRD模型。

A time-varying SIRD model for the COVID-19 contagion in Italy.

作者信息

Calafiore Giuseppe C, Novara Carlo, Possieri Corrado

机构信息

Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Torino 10129, Italy.

Institute of Electronics, Computer and Telecommunication Engineering, CNR, Torino, Italy.

出版信息

Annu Rev Control. 2020;50:361-372. doi: 10.1016/j.arcontrol.2020.10.005. Epub 2020 Oct 26.

Abstract

The purpose of this work is to give a contribution to the understanding of the COVID-19 contagion in Italy. To this end, we developed a modified Susceptible-Infected-Recovered-Deceased (SIRD) model for the contagion, and we used official data of the pandemic for identifying the parameters of this model. Our approach features two main non-standard aspects. The first one is that model parameters can be time-varying, allowing us to capture possible changes of the epidemic behavior, due for example to containment measures enforced by authorities or modifications of the epidemic characteristics and to the effect of advanced antiviral treatments. The time-varying parameters are written as linear combinations of basis functions and are then inferred from data using sparse identification techniques. The second non-standard aspect resides in the fact that we consider as model parameters also the initial number of susceptible individuals, as well as the proportionality factor relating the detected number of positives with the actual (and unknown) number of infected individuals. Identifying the model parameters amounts to a non-convex identification problem that we solve by means of a nested approach, consisting in a one-dimensional grid search in the outer loop, with a Lasso optimization problem in the inner step.

摘要

这项工作的目的是为理解意大利的新冠病毒传播情况做出贡献。为此,我们开发了一种用于传播的改进型易感-感染-康复-死亡(SIRD)模型,并使用疫情官方数据来确定该模型的参数。我们的方法有两个主要的非标准方面。第一个方面是模型参数可以随时间变化,这使我们能够捕捉疫情行为可能发生的变化,例如由于当局实施的防控措施、疫情特征的改变以及先进抗病毒治疗的效果。随时间变化的参数被写成基函数的线性组合,然后使用稀疏识别技术从数据中推断出来。第二个非标准方面在于,我们将易感个体的初始数量以及将检测到的阳性数量与实际(未知)感染个体数量相关联的比例因子也视为模型参数。确定模型参数相当于一个非凸识别问题,我们通过一种嵌套方法来解决,该方法在外循环中进行一维网格搜索,在内层步骤中进行套索优化问题求解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验