Suppr超能文献

新型人源单克隆抗体特异性结合 tenascin C 的交替剪接结构域 D,可有效靶向肿瘤。

Novel human monoclonal antibodies specific to the alternatively spliced domain D of Tenascin C efficiently target tumors .

机构信息

Biology department, Philochem AG , Otelfingen, Switzerland.

CiBIO (Department of Cellular, Computational and Integrative Biology, University of Trento, Italy , Trento, Italy.

出版信息

MAbs. 2020 Jan-Dec;12(1):1836713. doi: 10.1080/19420862.2020.1836713.

Abstract

Antibody-based delivery of bioactive molecules represents a promising strategy for the improvement of cancer immunotherapy. Here, we describe the generation and characterization of R6N, a novel fully human antibody specific to the alternatively spliced domain D of Tenascin C, which is highly expressed in the stroma of primary tumors and metastasis. The R6N antibody recognized its cognate tumor-associated antigen with identical specificity in mouse and human specimens. Moreover, the antibody was able to selectively localize to solid tumors as evidenced by immunofluorescence-based biodistribution analysis. Encouraged by these results, we developed a novel fusion protein (termed mIL12-R6N) consisting of the murine interleukin 12 fused to the R6N antibody in homodimeric tandem single-chain variable fragment arrangement. mIL12-R6N exhibited potent antitumor activity in immunodeficient mice bearing SKRC52 renal cell carcinoma, as well as in immunocompetent mice bearing SMA-497 glioma. The experiments presented in this work provide a rationale for possible future applications for the R6N antibody for the treatment of cancer patients.

摘要

基于抗体的生物活性分子递送代表了一种有前途的策略,可以改善癌症免疫疗法。在这里,我们描述了 R6N 的产生和表征,R6N 是一种新型的针对坚韧蛋白 C 的交替剪接结构域 D 的全人源抗体,该抗体在原发性肿瘤和转移灶的基质中高度表达。R6N 抗体在小鼠和人类标本中以相同的特异性识别其同源肿瘤相关抗原。此外,抗体能够通过基于免疫荧光的生物分布分析选择性地定位于实体瘤。基于这些结果,我们开发了一种新型融合蛋白(称为 mIL12-R6N),它由与 R6N 抗体融合的小鼠白细胞介素 12 组成,以同源二聚体串联单链可变片段排列。mIL12-R6N 在携带 SKRC52 肾细胞癌的免疫缺陷小鼠以及携带 SMA-497 神经胶质瘤的免疫功能正常小鼠中均表现出强大的抗肿瘤活性。本工作中进行的实验为 R6N 抗体在癌症患者治疗中的可能未来应用提供了依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验