Suppr超能文献

铁磁软连续体机器人。

Ferromagnetic soft continuum robots.

作者信息

Kim Yoonho, Parada German A, Liu Shengduo, Zhao Xuanhe

机构信息

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Sci Robot. 2019 Aug 28;4(33). doi: 10.1126/scirobotics.aax7329.

Abstract

Small-scale soft continuum robots capable of active steering and navigation in a remotely controllable manner hold great promise in diverse areas, particularly in medical applications. Existing continuum robots, however, are often limited to millimeter or centimeter scales due to miniaturization challenges inherent in conventional actuation mechanisms, such as pulling mechanical wires, inflating pneumatic or hydraulic chambers, or embedding rigid magnets for manipulation. In addition, the friction experienced by the continuum robots during navigation poses another challenge for their applications. Here, we present a submillimeter-scale, self-lubricating soft continuum robot with omnidirectional steering and navigating capabilities based on magnetic actuation, which are enabled by programming ferromagnetic domains in its soft body while growing hydrogel skin on its surface. The robot's body, composed of a homogeneous continuum of a soft polymer matrix with uniformly dispersed ferromagnetic microparticles, can be miniaturized below a few hundreds of micrometers in diameter, and the hydrogel skin reduces the friction by more than 10 times. We demonstrate the capability of navigating through complex and constrained environments, such as a tortuous cerebrovascular phantom with multiple aneurysms. We further demonstrate additional functionalities, such as steerable laser delivery through a functional core incorporated in the robot's body. Given their compact, self-contained actuation and intuitive manipulation, our ferromagnetic soft continuum robots may open avenues to minimally invasive robotic surgery for previously inaccessible lesions, thereby addressing challenges and unmet needs in healthcare.

摘要

能够以远程可控方式进行主动转向和导航的小型软连续体机器人在多个领域都具有巨大潜力,尤其是在医疗应用中。然而,由于传统驱动机制(如拉动机械线、给气动或液压腔充气或嵌入刚性磁体进行操作)固有的小型化挑战,现有的连续体机器人通常限于毫米或厘米尺度。此外,连续体机器人在导航过程中所经历的摩擦也给它们的应用带来了另一项挑战。在此,我们展示了一种基于磁驱动的具有全向转向和导航能力的亚毫米级自润滑软连续体机器人,它通过在其软体中对铁磁畴进行编程并在其表面生长水凝胶表皮来实现这些功能。该机器人的主体由具有均匀分散的铁磁微粒的软聚合物基质均匀连续体组成,其直径可缩小至几百微米以下,并且水凝胶表皮将摩擦力降低了10倍以上。我们展示了该机器人在复杂且受限环境(如具有多个动脉瘤的曲折脑血管模型)中导航的能力。我们还展示了其他功能,如通过集成在机器人主体中的功能核心进行可控激光输送。鉴于其紧凑、独立的驱动方式和直观的操作,我们的铁磁软连续体机器人可能为针对以前难以到达的病变进行微创机器人手术开辟道路,从而应对医疗保健中的挑战和未满足的需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验