Suppr超能文献

通过 miR-130 和 miR-33 载带的外泌体诱导巨噬细胞中 M1 表型的体内外抗肿瘤效果评估。

In vitro and in vivo evaluation of anti-tumoral effect of M1 phenotype induction in macrophages by miR-130 and miR-33 containing exosomes.

机构信息

Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

Cancer Immunol Immunother. 2021 May;70(5):1323-1339. doi: 10.1007/s00262-020-02762-x. Epub 2020 Nov 3.

Abstract

In the tumor microenvironment, macrophages polarize into the M2 phenotype to facilitate tumorigenesis. Tumor-derived exosomes can act as mediators between the tumor microenvironment and stromal cells by transporting proteins, mRNAs, and miRNAs. Exosomal miRNAs play a pivotal role in modulating tumor microenvironment and macrophage polarization. Here, we overexpressed miR-130 and miR-33 in exosomes of MDA-MB-231 cells and investigated their effect on macrophage polarization and tumor progression. For this purpose, exosomes were extracted from MDA-MB-231 cells and characterized using dynamic light scattering, electron microscopy, and western blotting of exosomal markers. Then, miR-130 or miR-33 containing exosomes were used to treat IL4-induced M2 or tumor-associated macrophages (TAMs). After treatment, the polarization status of macrophages, including the expression of M1 specific genes, and the secretion of cytokines were evaluated. Finally, the conditioned medium from exosome-treated macrophages was incubated with cancer cells to evaluate its effect on the migration and invasion ability of cancer cells and, in vivo experiments investigated the effect of exosome-treated macrophages on breast cancer progression. Exosomes characterization results approved the range of size and homogeneity of extracted exosomes. Overexpression of miR-130 and miR-33 in exosomes increased the expression of M1 signature genes (IRF5, MCP1, CD80) and secretion of cytokines (IL-1β and TNF-α) as well as yeast phagocytic activity of macrophages. Besides, the conditioned medium of macrophages treated with miRNA containing exosomes declined the migration and invasion ability of cancer cells. The in vivo results indicated the inhibitory effect of exosome-treated macrophages on tumor growth. Furthermore, the results showed that in response to exosome-treated macrophages, the production of TNF-α by spleen cells increased, while the production of IL-10 and TGF-β by these cells decreased. These findings suggest that overexpression of miR-130 and miR-33 in exosomes can decrease tumor progression by shifting macrophage polarization from M2 to M1 phenotype and can be a potential therapeutic strategy for tumor interventions.

摘要

在肿瘤微环境中,巨噬细胞极化为 M2 表型以促进肿瘤发生。肿瘤衍生的外泌体可以通过运输蛋白质、mRNA 和 miRNA 作为肿瘤微环境和基质细胞之间的介质。外泌体 miRNA 在调节肿瘤微环境和巨噬细胞极化中发挥关键作用。在这里,我们在 MDA-MB-231 细胞的外泌体中过表达 miR-130 和 miR-33,并研究了它们对巨噬细胞极化和肿瘤进展的影响。为此,从 MDA-MB-231 细胞中提取外泌体,并通过动态光散射、电子显微镜和外泌体标志物的 Western blot 进行表征。然后,用含有 miR-130 或 miR-33 的外泌体处理 IL4 诱导的 M2 或肿瘤相关巨噬细胞(TAMs)。处理后,评估巨噬细胞的极化状态,包括 M1 特异性基因的表达和细胞因子的分泌。最后,用外泌体处理的巨噬细胞的条件培养基孵育癌细胞,以评估其对癌细胞迁移和侵袭能力的影响,并进行体内实验研究外泌体处理的巨噬细胞对乳腺癌进展的影响。外泌体特征化结果证实了提取外泌体的大小范围和均一性。外泌体中 miR-130 和 miR-33 的过表达增加了 M1 特征基因(IRF5、MCP1、CD80)的表达和细胞因子(IL-1β 和 TNF-α)的分泌以及巨噬细胞的酵母吞噬活性。此外,用含有 miRNA 的外泌体处理的巨噬细胞的条件培养基降低了癌细胞的迁移和侵袭能力。体内结果表明,外泌体处理的巨噬细胞对肿瘤生长具有抑制作用。此外,结果表明,与外泌体处理的巨噬细胞反应后,脾细胞产生的 TNF-α增加,而这些细胞产生的 IL-10 和 TGF-β减少。这些发现表明,外泌体中 miR-130 和 miR-33 的过表达可以通过将巨噬细胞从 M2 表型极化到 M1 表型来减少肿瘤进展,并且可以成为肿瘤干预的潜在治疗策略。

相似文献

1
In vitro and in vivo evaluation of anti-tumoral effect of M1 phenotype induction in macrophages by miR-130 and miR-33 containing exosomes.
Cancer Immunol Immunother. 2021 May;70(5):1323-1339. doi: 10.1007/s00262-020-02762-x. Epub 2020 Nov 3.
2
Exosome-mediated miR-33 transfer induces M1 polarization in mouse macrophages and exerts antitumor effect in 4T1 breast cancer cell line.
Int Immunopharmacol. 2021 Jan;90:107198. doi: 10.1016/j.intimp.2020.107198. Epub 2020 Nov 25.
5
Hypoxia-reoxygenation induces macrophage polarization and causes the release of exosomal miR-29a to mediate cardiomyocyte pyroptosis.
In Vitro Cell Dev Biol Anim. 2021 Jan;57(1):30-41. doi: 10.1007/s11626-020-00524-8. Epub 2021 Jan 8.
6
Reprogramming tumor-associated macrophages using exosomes from M1 macrophages.
Biochem Biophys Res Commun. 2024 Nov 12;733:150697. doi: 10.1016/j.bbrc.2024.150697. Epub 2024 Sep 13.
7
Mouse 4T1 Breast Cancer Cell-Derived Exosomes Induce Proinflammatory Cytokine Production in Macrophages via miR-183.
J Immunol. 2020 Nov 15;205(10):2916-2925. doi: 10.4049/jimmunol.1901104. Epub 2020 Sep 28.
8
Exosome microRNA-125a-5p derived from epithelium promotes M1 macrophage polarization by targeting IL1RN in chronic obstructive pulmonary disease.
Int Immunopharmacol. 2024 Aug 20;137:112466. doi: 10.1016/j.intimp.2024.112466. Epub 2024 Jun 13.
10
Cancer-derived exosomal miR-138-5p modulates polarization of tumor-associated macrophages through inhibition of KDM6B.
Theranostics. 2021 May 3;11(14):6847-6859. doi: 10.7150/thno.51864. eCollection 2021.

引用本文的文献

1
Decoding the Tumor Microenvironment: Exosome-Mediated Macrophage Polarization and Therapeutic Frontiers.
Int J Biol Sci. 2025 Jun 20;21(9):4187-4214. doi: 10.7150/ijbs.114222. eCollection 2025.
2
Potential biological roles of exosomal non-coding RNAs in breast cancer.
FASEB J. 2025 Mar 31;39(6):e70456. doi: 10.1096/fj.202500022R.
3
Exosomes: a double-edged sword in cancer immunotherapy.
MedComm (2020). 2025 Feb 17;6(3):e70095. doi: 10.1002/mco2.70095. eCollection 2025 Mar.
4
Pinosylvin as a promising natural anticancer agent: mechanisms of action and future directions in cancer therapy.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Feb 7. doi: 10.1007/s00210-025-03850-4.
5
Extracellular vesicles and macrophages in tumor microenvironment: Impact on cervical cancer.
Heliyon. 2024 Jul 26;10(15):e35063. doi: 10.1016/j.heliyon.2024.e35063. eCollection 2024 Aug 15.
6
Tumor-derived extracellular vesicles regulate macrophage polarization: role and therapeutic perspectives.
Front Immunol. 2024 Apr 16;15:1346587. doi: 10.3389/fimmu.2024.1346587. eCollection 2024.
8
Unveiling the mechanisms and challenges of cancer drug resistance.
Cell Commun Signal. 2024 Feb 12;22(1):109. doi: 10.1186/s12964-023-01302-1.
10
Tumor-associated macrophages: an effective player of the tumor microenvironment.
Front Immunol. 2023 Nov 16;14:1295257. doi: 10.3389/fimmu.2023.1295257. eCollection 2023.

本文引用的文献

1
Macrophage Polarization in the Development and Progression of Ovarian Cancers: An Overview.
Front Oncol. 2019 May 22;9:421. doi: 10.3389/fonc.2019.00421. eCollection 2019.
2
3
Exosomes in the tumor microenvironment as mediators of cancer therapy resistance.
Mol Cancer. 2019 Mar 1;18(1):32. doi: 10.1186/s12943-019-0975-5.
4
Cancer statistics, 2019.
CA Cancer J Clin. 2019 Jan;69(1):7-34. doi: 10.3322/caac.21551. Epub 2019 Jan 8.
6
Transcriptional Regulation of Macrophages Polarization by MicroRNAs.
Front Immunol. 2018 May 28;9:1175. doi: 10.3389/fimmu.2018.01175. eCollection 2018.
7
Targeting Macrophages in Cancer: From Bench to Bedside.
Front Oncol. 2018 Mar 12;8:49. doi: 10.3389/fonc.2018.00049. eCollection 2018.
9
Macrophage Immunometabolism: Where Are We (Going)?
Trends Immunol. 2017 Jun;38(6):395-406. doi: 10.1016/j.it.2017.03.001. Epub 2017 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验