Suppr超能文献

重症监护病房中的人工智能

Artificial Intelligence in the Intensive Care Unit.

作者信息

Greco Massimiliano, Caruso Pier F, Cecconi Maurizio

机构信息

Department of Anesthesiology and Intensive Care, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy.

Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.

出版信息

Semin Respir Crit Care Med. 2021 Feb;42(1):2-9. doi: 10.1055/s-0040-1719037. Epub 2020 Nov 5.

Abstract

The diffusion of electronic health records collecting large amount of clinical, monitoring, and laboratory data produced by intensive care units (ICUs) is the natural terrain for the application of artificial intelligence (AI). AI has a broad definition, encompassing computer vision, natural language processing, and machine learning, with the latter being more commonly employed in the ICUs. Machine learning may be divided in supervised learning models (i.e., support vector machine [SVM] and random forest), unsupervised models (i.e., neural networks [NN]), and reinforcement learning. Supervised models require labeled data that is data mapped by human judgment against predefined categories. Unsupervised models, on the contrary, can be used to obtain reliable predictions even without labeled data. Machine learning models have been used in ICU to predict pathologies such as acute kidney injury, detect symptoms, including delirium, and propose therapeutic actions (vasopressors and fluids in sepsis). In the future, AI will be increasingly used in ICU, due to the increasing quality and quantity of available data. Accordingly, the ICU team will benefit from models with high accuracy that will be used for both research purposes and clinical practice. These models will be also the foundation of future decision support system (DSS), which will help the ICU team to visualize and analyze huge amounts of information. We plea for the creation of a standardization of a core group of data between different electronic health record systems, using a common dictionary for data labeling, which could greatly simplify sharing and merging of data from different centers.

摘要

收集重症监护病房(ICU)产生的大量临床、监测和实验室数据的电子健康记录的普及,为人工智能(AI)的应用提供了天然土壤。人工智能有广泛的定义,涵盖计算机视觉、自然语言处理和机器学习,其中机器学习在ICU中应用更为普遍。机器学习可分为监督学习模型(即支持向量机[SVM]和随机森林)、无监督模型(即神经网络[NN])和强化学习。监督模型需要有标记的数据,即通过人工判断映射到预定义类别的数据。相反,无监督模型即使没有标记数据也可用于获得可靠的预测。机器学习模型已在ICU中用于预测诸如急性肾损伤等病症、检测包括谵妄在内的症状,并提出治疗措施(脓毒症中的血管加压药和液体)。未来,由于可用数据的质量和数量不断增加,人工智能在ICU中的应用将越来越多。因此,ICU团队将受益于高精度的模型,这些模型将用于研究目的和临床实践。这些模型也将成为未来决策支持系统(DSS)的基础,该系统将帮助ICU团队可视化和分析大量信息。我们呼吁在不同的电子健康记录系统之间创建一组核心数据的标准化,使用通用字典进行数据标记,这可以大大简化来自不同中心的数据的共享和合并。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验