Gagnon David A, Dessi Claudia, Berezney John P, Boros Remi, Chen Daniel T-N, Dogic Zvonimir, Blair Daniel L
Department of Physics and Institute for Soft Matter Synthesis & Metrology, Georgetown University, 3700 O Street NW, Washington, D.C. 20057, USA.
Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA.
Phys Rev Lett. 2020 Oct 23;125(17):178003. doi: 10.1103/PhysRevLett.125.178003.
An enticing feature of active materials is the possibility of controlling macroscale rheological properties through the activity of the microscopic constituents. Using a unique combination of microscopy and rheology we study three dimensional microtubule-based active materials whose autonomous flows are powered by a continually rearranging connected network. We quantify the relationship between the microscopic dynamics and the bulk mechanical properties of these nonequilibrium networks. Experiments reveal a surprising nonmonotonic viscosity that strongly depends on the relative magnitude of the rate of internally generated activity and the externally applied shear. A simple two-state mechanical model that accounts for both the solidlike and yielded fluidlike elements of the network accurately describes the rheological measurements.
活性材料一个诱人的特性是,有可能通过微观成分的活性来控制宏观流变特性。我们使用显微镜和流变学的独特组合,研究了基于三维微管的活性材料,其自主流动由不断重新排列的连接网络驱动。我们量化了这些非平衡网络的微观动力学与整体力学性能之间的关系。实验揭示了一种惊人的非单调粘度,它强烈依赖于内部产生的活性速率与外部施加剪切力的相对大小。一个简单的双态力学模型,该模型考虑了网络中类似固体和已屈服的类似流体的元素,准确地描述了流变学测量结果。