Suppr超能文献

细胞控制黏度以应对温度和能量供应的变化。

Cellular Control of Viscosity Counters Changes in Temperature and Energy Availability.

机构信息

Department of Biology, Stanford University, Stanford, CA 94305, USA.

Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA.

出版信息

Cell. 2020 Dec 10;183(6):1572-1585.e16. doi: 10.1016/j.cell.2020.10.017. Epub 2020 Nov 5.

Abstract

Cellular functioning requires the orchestration of thousands of molecular interactions in time and space. Yet most molecules in a cell move by diffusion, which is sensitive to external factors like temperature. How cells sustain complex, diffusion-based systems across wide temperature ranges is unknown. Here, we uncover a mechanism by which budding yeast modulate viscosity in response to temperature and energy availability. This "viscoadaptation" uses regulated synthesis of glycogen and trehalose to vary the viscosity of the cytosol. Viscoadaptation functions as a stress response and a homeostatic mechanism, allowing cells to maintain invariant diffusion across a 20°C temperature range. Perturbations to viscoadaptation affect solubility and phase separation, suggesting that viscoadaptation may have implications for multiple biophysical processes in the cell. Conditions that lower ATP trigger viscoadaptation, linking energy availability to rate regulation of diffusion-controlled processes. Viscoadaptation reveals viscosity to be a tunable property for regulating diffusion-controlled processes in a changing environment.

摘要

细胞功能的实现需要在时间和空间上协调数以千计的分子相互作用。然而,细胞中的大多数分子都是通过扩散来运动的,而扩散容易受到温度等外部因素的影响。细胞如何在较宽的温度范围内维持复杂的基于扩散的系统尚不清楚。在这里,我们揭示了出芽酵母响应温度和能量可用性来调节粘度的机制。这种“粘弹性适应”利用糖原和海藻糖的调节合成来改变细胞质的粘度。粘弹性适应作为一种应激反应和一种动态平衡机制,使细胞能够在 20°C 的温度范围内保持不变的扩散。对粘弹性适应的干扰会影响溶解度和相分离,表明粘弹性适应可能对细胞中的多种生物物理过程有影响。降低 ATP 的条件会触发粘弹性适应,将能量可用性与扩散控制过程的速率调节联系起来。粘弹性适应揭示了粘度是在不断变化的环境中调节扩散控制过程的可调特性。

相似文献

1
Cellular Control of Viscosity Counters Changes in Temperature and Energy Availability.
Cell. 2020 Dec 10;183(6):1572-1585.e16. doi: 10.1016/j.cell.2020.10.017. Epub 2020 Nov 5.
2
Not Going with the Flow: How Cells Adapt Internal Physics.
Cell. 2020 Dec 10;183(6):1462-1463. doi: 10.1016/j.cell.2020.11.021.
5
Changes in wine yeast storage carbohydrate levels during preadaptation, rehydration and low temperature fermentations.
Int J Food Microbiol. 2003 Sep 1;86(1-2):153-61. doi: 10.1016/s0168-1605(03)00253-8.
6
Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae.
FEMS Microbiol Rev. 2001 Jan;25(1):125-45. doi: 10.1111/j.1574-6976.2001.tb00574.x.
9
Yeast Tolerance to Various Stresses Relies on the Trehalose-6P Synthase (Tps1) Protein, Not on Trehalose.
J Biol Chem. 2015 Jun 26;290(26):16177-90. doi: 10.1074/jbc.M115.653899. Epub 2015 May 1.

引用本文的文献

1
Mechanistic origins of temperature scaling in the early embryonic cell cycle.
Nat Commun. 2025 Aug 28;16(1):8045. doi: 10.1038/s41467-025-62918-0.
2
Dendritic Membranized Coacervate Microdroplets: A Robust Platform for Synthetic-Living Cell Consortia.
J Am Chem Soc. 2025 Aug 13;147(32):29457-29467. doi: 10.1021/jacs.5c09772. Epub 2025 Aug 2.
3
Phase Separation Regulates Metabolism, Mitochondria, and Diseases.
MedComm (2020). 2025 Jul 1;6(7):e70283. doi: 10.1002/mco2.70283. eCollection 2025 Jul.
4
Intracellular Ca waves in mammalian cells.
Biol Futur. 2025 Jun 29. doi: 10.1007/s42977-025-00270-6.
5
Micropipette aspiration reveals differential RNA-dependent viscoelasticity of nucleolar subcompartments.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2407423122. doi: 10.1073/pnas.2407423122. Epub 2025 May 28.
6
Molecular and Biophysical Perspectives on Dormancy Breaking: Lessons from Yeast Spore.
Biomolecules. 2025 May 11;15(5):701. doi: 10.3390/biom15050701.
7
Loss of intracellular ATP affects axoplasmic viscosity and pathological protein aggregation in mammalian neurons.
Sci Adv. 2025 Apr 25;11(17):eadq6077. doi: 10.1126/sciadv.adq6077. Epub 2025 Apr 23.
9
Candidate transmission survival genome of .
Proc Natl Acad Sci U S A. 2025 Mar 11;122(10):e2425981122. doi: 10.1073/pnas.2425981122. Epub 2025 Mar 7.
10
The viscoelastic properties of Nicotiana tabacum BY-2 suspension cell lines adapted to high osmolarity.
BMC Plant Biol. 2025 Feb 25;25(1):255. doi: 10.1186/s12870-025-06232-3.

本文引用的文献

1
Biological phase separation: cell biology meets biophysics.
Biophys Rev. 2020 Apr;12(2):519-539. doi: 10.1007/s12551-020-00680-x. Epub 2020 Mar 18.
2
The Heat Shock Response in Yeast Maintains Protein Homeostasis by Chaperoning and Replenishing Proteins.
Cell Rep. 2019 Dec 24;29(13):4593-4607.e8. doi: 10.1016/j.celrep.2019.11.109.
3
Particle Mobility Analysis Using Deep Learning and the Moment Scaling Spectrum.
Sci Rep. 2019 Nov 20;9(1):17160. doi: 10.1038/s41598-019-53663-8.
4
Viscous control of cellular respiration by membrane lipid composition.
Science. 2018 Dec 7;362(6419):1186-1189. doi: 10.1126/science.aat7925. Epub 2018 Oct 25.
5
Modeling the Self-Assembly of Protein Complexes through a Rigid-Body Rotational Reaction-Diffusion Algorithm.
J Phys Chem B. 2018 Dec 13;122(49):11771-11783. doi: 10.1021/acs.jpcb.8b08339. Epub 2018 Oct 12.
6
mTORC1 Controls Phase Separation and the Biophysical Properties of the Cytoplasm by Tuning Crowding.
Cell. 2018 Jul 12;174(2):338-349.e20. doi: 10.1016/j.cell.2018.05.042. Epub 2018 Jun 21.
7
EasyFRAP-web: a web-based tool for the analysis of fluorescence recovery after photobleaching data.
Nucleic Acids Res. 2018 Jul 2;46(W1):W467-W472. doi: 10.1093/nar/gky508.
8
Metabolic shift from glycogen to trehalose promotes lifespan and healthspan in .
Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):E2791-E2800. doi: 10.1073/pnas.1714178115. Epub 2018 Mar 6.
9
The dynamic life of the glycogen granule.
J Biol Chem. 2018 May 11;293(19):7089-7098. doi: 10.1074/jbc.R117.802843. Epub 2018 Feb 26.
10
Phase separation of a yeast prion protein promotes cellular fitness.
Science. 2018 Jan 5;359(6371). doi: 10.1126/science.aao5654.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验