Suppr超能文献

重组治疗性酶的蛋白质相互作用的原位检测。

In situ detection of protein interactions for recombinant therapeutic enzymes.

机构信息

Department of Pediatrics, University of California, San Diego, La Jolla, California, USA.

Novo Nordisk Foundation Center for Biosustainability, UC San Diego, La Jolla, California, USA.

出版信息

Biotechnol Bioeng. 2021 Feb;118(2):890-904. doi: 10.1002/bit.27621. Epub 2020 Nov 24.

Abstract

Despite their therapeutic potential, many protein drugs remain inaccessible to patients since they are difficult to secrete. Each recombinant protein has unique physicochemical properties and requires different machinery for proper folding, assembly, and posttranslational modifications (PTMs). Here we aimed to identify the machinery supporting recombinant protein secretion by measuring the protein-protein interaction (PPI) networks of four different recombinant proteins (SERPINA1, SERPINC1, SERPING1, and SeAP) with various PTMs and structural motifs using the proximity-dependent biotin identification (BioID) method. We identified PPIs associated with specific features of the secreted proteins using a Bayesian statistical model and found proteins involved in protein folding, disulfide bond formation, and N-glycosylation were positively correlated with the corresponding features of the four model proteins. Among others, oxidative folding enzymes showed the strongest association with disulfide bond formation, supporting their critical roles in proper folding and maintaining the ER stability. Knockdown of disulfide-isomerase PDIA4, a measured interactor with significance for SERPINC1 but not SERPINA1, led to the decreased secretion of SERPINC1, which relies on its extensive disulfide bonds, compared to SERPINA1, which has no disulfide bonds. Proximity-dependent labeling successfully identified the transient interactions supporting synthesis of secreted recombinant proteins and refined our understanding of key molecular mechanisms of the secretory pathway during recombinant protein production.

摘要

尽管具有治疗潜力,但许多蛋白质药物仍然无法为患者所用,因为它们难以分泌。每种重组蛋白都具有独特的理化性质,并且需要不同的机制来正确折叠、组装和翻译后修饰(PTM)。在这里,我们旨在通过使用邻近依赖性生物素鉴定(BioID)方法测量具有不同 PTM 和结构基序的四种不同重组蛋白(SERPINA1、SERPINC1、SERPING1 和 SeAP)的蛋白质-蛋白质相互作用(PPI)网络,来鉴定支持重组蛋白分泌的机制。我们使用贝叶斯统计模型鉴定与分泌蛋白特定特征相关的 PPI,并发现与蛋白质折叠、二硫键形成和 N-糖基化相关的蛋白质与四个模型蛋白的相应特征呈正相关。在其他方面,氧化折叠酶与二硫键形成的关联最强,支持它们在正确折叠和维持 ER 稳定性方面的关键作用。与 SERPINC1 而非 SERPINA1 具有显著相关性的二硫键异构酶 PDIA4 的敲低导致 SERPINC1 的分泌减少,与 SERPINA1 相比,SERPINC1 依赖其广泛的二硫键,而 SERPINA1 则没有二硫键。邻近依赖性标记成功鉴定了支持分泌重组蛋白合成的瞬时相互作用,并细化了我们对重组蛋白生产过程中分泌途径关键分子机制的理解。

相似文献

1
In situ detection of protein interactions for recombinant therapeutic enzymes.
Biotechnol Bioeng. 2021 Feb;118(2):890-904. doi: 10.1002/bit.27621. Epub 2020 Nov 24.
2
Effect of the disulfide isomerase PDIa4 on the antibody production of Chinese hamster ovary cells.
J Biosci Bioeng. 2020 Dec;130(6):637-643. doi: 10.1016/j.jbiosc.2020.08.001. Epub 2020 Aug 30.
3
TorsinA folding and N-linked glycosylation are sensitive to redox homeostasis.
Biochim Biophys Acta Mol Cell Res. 2021 Aug;1868(9):119073. doi: 10.1016/j.bbamcr.2021.119073. Epub 2021 May 29.
4
Harnessing the potential of bacterial oxidative folding to aid protein production.
Mol Microbiol. 2021 Jul;116(1):16-28. doi: 10.1111/mmi.14700. Epub 2021 Feb 25.
5
Co- and Post-Translational Protein Folding in the ER.
Traffic. 2016 Jun;17(6):615-38. doi: 10.1111/tra.12392. Epub 2016 Apr 22.
7
Yeast synthetic biology for designed cell factories producing secretory recombinant proteins.
FEMS Yeast Res. 2020 Mar 1;20(2). doi: 10.1093/femsyr/foaa009.
8
N-linked glycosylation modulates dimerization of protein disulfide isomerase family A member 2 (PDIA2).
FEBS J. 2013 Jan;280(1):233-43. doi: 10.1111/febs.12063. Epub 2012 Dec 14.
9
Dissecting the machinery that introduces disulfide bonds in Pseudomonas aeruginosa.
mBio. 2013 Dec 10;4(6):e00912-13. doi: 10.1128/mBio.00912-13.

引用本文的文献

本文引用的文献

1
Measurement of co-localization of objects in dual-colour confocal images.
J Microsc. 1993 Mar;169(3):375-382. doi: 10.1111/j.1365-2818.1993.tb03313.x.
3
Author Correction: Efficient proximity labeling in living cells and organisms with TurboID.
Nat Biotechnol. 2020 Jan;38(1):108. doi: 10.1038/s41587-019-0355-0.
5
BioID as a Tool for Protein-Proximity Labeling in Living Cells.
Methods Mol Biol. 2019;2012:299-313. doi: 10.1007/978-1-4939-9546-2_15.
6
Heterogeneous translational landscape of the endoplasmic reticulum revealed by ribosome proximity labeling and transcriptome analysis.
J Biol Chem. 2019 May 31;294(22):8942-8958. doi: 10.1074/jbc.RA119.007996. Epub 2019 Apr 19.
7
Zinc regulates ERp44-dependent protein quality control in the early secretory pathway.
Nat Commun. 2019 Feb 5;10(1):603. doi: 10.1038/s41467-019-08429-1.
8
Proteome-wide identification of ubiquitin interactions using UbIA-MS.
Nat Protoc. 2018 Mar;13(3):530-550. doi: 10.1038/nprot.2017.147. Epub 2018 Feb 15.
9
Perseus: A Bioinformatics Platform for Integrative Analysis of Proteomics Data in Cancer Research.
Methods Mol Biol. 2018;1711:133-148. doi: 10.1007/978-1-4939-7493-1_7.
10
Human protein secretory pathway genes are expressed in a tissue-specific pattern to match processing demands of the secretome.
NPJ Syst Biol Appl. 2017 Aug 18;3:22. doi: 10.1038/s41540-017-0021-4. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验