Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck (D.G., I.R.K.).
German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck (D.G., J.E., I.R.K.).
Circ Genom Precis Med. 2020 Dec;13(6):e002932. doi: 10.1161/CIRCGEN.120.002932. Epub 2020 Nov 10.
Individual risk prediction based on genome-wide polygenic risk scores (PRSs) using millions of genetic variants has attracted much attention. It is under debate whether PRS models can be applied-without loss of precision-to populations of similar ethnic but different geographic background than the one the scores were trained on. Here, we examine how PRS trained in population-specific but European data sets perform in other European subpopulations in distinguishing between coronary artery disease patients and healthy individuals.
We use data from UK and Estonian biobanks (UKB, EB) as well as case-control data from the German population (DE) to develop and evaluate PRS in the same and different populations.
PRSs have the highest performance in their corresponding population testing data sets, whereas their performance significantly drops if applied to testing data sets from different European populations. Models trained on DE data revealed area under the curves in independent testing sets in DE: 0.6752, EB: 0.6156, and UKB: 0.5989; trained on EB and tested on EB: 0.6565, DE: 0.5407, and UKB: 0.6043; trained on UKB and tested on UKB: 0.6133, DE: 0.5143, and EB: 0.6049.
This result has a direct impact on the clinical usability of PRS for risk prediction models using PRS: a population effect must be kept in mind when applying risk estimation models, which are based on additional genetic information even for individuals from different European populations of the same ethnicity.
基于使用数百万个遗传变异的全基因组多基因风险评分(PRS)进行个体风险预测引起了广泛关注。目前还存在争议的是,PRS 模型是否可以在与评分所基于的人群具有相似种族但不同地理背景的人群中应用,而不会降低精度。在这里,我们研究了在特定人群中训练的 PRS 如何在其他欧洲亚人群中区分冠心病患者和健康个体。
我们使用来自英国和爱沙尼亚生物库(UKB、EB)的数据以及来自德国人群的病例对照数据(DE)来开发和评估在相同和不同人群中 PRS 的性能。
PRS 在其相应的人群测试数据集的性能最高,而如果将其应用于来自不同欧洲人群的测试数据集,则其性能会显著下降。在德国独立测试数据集上,DE 数据训练的模型的曲线下面积为 0.6752,EB 为 0.6156,UKB 为 0.5989;EB 和 DE 数据训练的模型,在 EB 和 DE 上的测试分别为 0.6565、0.5407 和 0.6043;UKB 和 UKB 数据训练的模型,在 UKB 和 EB 上的测试分别为 0.6133、0.5143 和 0.6049。
这一结果直接影响了使用 PRS 进行风险预测模型的 PRS 的临床可用性:在应用基于额外遗传信息的风险估计模型时,必须考虑人群效应,即使对于来自同一族群的不同欧洲人群的个体也是如此。