Suppr超能文献

使用深度学习与标准方法对前列腺癌和黑色素瘤患者进行种系基因检测以发现致病性变异体。

Detection of Pathogenic Variants With Germline Genetic Testing Using Deep Learning vs Standard Methods in Patients With Prostate Cancer and Melanoma.

机构信息

Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Harvard University, Boston, Massachusetts.

Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge.

出版信息

JAMA. 2020 Nov 17;324(19):1957-1969. doi: 10.1001/jama.2020.20457.

Abstract

IMPORTANCE

Less than 10% of patients with cancer have detectable pathogenic germline alterations, which may be partially due to incomplete pathogenic variant detection.

OBJECTIVE

To evaluate if deep learning approaches identify more germline pathogenic variants in patients with cancer.

DESIGN, SETTING, AND PARTICIPANTS: A cross-sectional study of a standard germline detection method and a deep learning method in 2 convenience cohorts with prostate cancer and melanoma enrolled in the US and Europe between 2010 and 2017. The final date of clinical data collection was December 2017.

EXPOSURES

Germline variant detection using standard or deep learning methods.

MAIN OUTCOMES AND MEASURES

The primary outcomes included pathogenic variant detection performance in 118 cancer-predisposition genes estimated as sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). The secondary outcomes were pathogenic variant detection performance in 59 genes deemed actionable by the American College of Medical Genetics and Genomics (ACMG) and 5197 clinically relevant mendelian genes. True sensitivity and true specificity could not be calculated due to lack of a criterion reference standard, but were estimated as the proportion of true-positive variants and true-negative variants, respectively, identified by each method in a reference variant set that consisted of all variants judged to be valid from either approach.

RESULTS

The prostate cancer cohort included 1072 men (mean [SD] age at diagnosis, 63.7 [7.9] years; 857 [79.9%] with European ancestry) and the melanoma cohort included 1295 patients (mean [SD] age at diagnosis, 59.8 [15.6] years; 488 [37.7%] women; 1060 [81.9%] with European ancestry). The deep learning method identified more patients with pathogenic variants in cancer-predisposition genes than the standard method (prostate cancer: 198 vs 182; melanoma: 93 vs 74); sensitivity (prostate cancer: 94.7% vs 87.1% [difference, 7.6%; 95% CI, 2.2% to 13.1%]; melanoma: 74.4% vs 59.2% [difference, 15.2%; 95% CI, 3.7% to 26.7%]), specificity (prostate cancer: 64.0% vs 36.0% [difference, 28.0%; 95% CI, 1.4% to 54.6%]; melanoma: 63.4% vs 36.6% [difference, 26.8%; 95% CI, 17.6% to 35.9%]), PPV (prostate cancer: 95.7% vs 91.9% [difference, 3.8%; 95% CI, -1.0% to 8.4%]; melanoma: 54.4% vs 35.4% [difference, 19.0%; 95% CI, 9.1% to 28.9%]), and NPV (prostate cancer: 59.3% vs 25.0% [difference, 34.3%; 95% CI, 10.9% to 57.6%]; melanoma: 80.8% vs 60.5% [difference, 20.3%; 95% CI, 10.0% to 30.7%]). For the ACMG genes, the sensitivity of the 2 methods was not significantly different in the prostate cancer cohort (94.9% vs 90.6% [difference, 4.3%; 95% CI, -2.3% to 10.9%]), but the deep learning method had a higher sensitivity in the melanoma cohort (71.6% vs 53.7% [difference, 17.9%; 95% CI, 1.82% to 34.0%]). The deep learning method had higher sensitivity in the mendelian genes (prostate cancer: 99.7% vs 95.1% [difference, 4.6%; 95% CI, 3.0% to 6.3%]; melanoma: 91.7% vs 86.2% [difference, 5.5%; 95% CI, 2.2% to 8.8%]).

CONCLUSIONS AND RELEVANCE

Among a convenience sample of 2 independent cohorts of patients with prostate cancer and melanoma, germline genetic testing using deep learning, compared with the current standard genetic testing method, was associated with higher sensitivity and specificity for detection of pathogenic variants. Further research is needed to understand the relevance of these findings with regard to clinical outcomes.

摘要

重要性:不到 10%的癌症患者存在可检测的种系致病性改变,这可能部分归因于致病性变异检测不完整。

目的:评估深度学习方法是否能在癌症患者中发现更多种系致病性变异。

设计、地点和参与者:一项横断面研究,在 2010 年至 2017 年期间,美国和欧洲的前列腺癌和黑色素瘤患者的两个便利队列中,分别采用标准种系检测方法和深度学习方法进行研究。临床数据采集的最后日期为 2017 年 12 月。

暴露:使用标准或深度学习方法检测种系变异。

主要结局和测量:主要结局包括在 118 个癌症易感性基因中估计的致病性变异检测性能,表现为敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)。次要结局为美国医学遗传学与基因组学学院(ACMG)认为有作用的 59 个基因和临床相关孟德尔基因 5197 个的致病性变异检测性能。由于缺乏标准参考标准,无法计算真实敏感性和真实特异性,但可以通过参考变异集来估计,该参考变异集由每个方法识别的所有变异组成,这些变异被认为是两种方法中的任何一种都是有效的。

结果:前列腺癌队列包括 1072 名男性(诊断时的平均[SD]年龄,63.7[7.9]岁;857[79.9%]为欧洲血统),黑色素瘤队列包括 1295 名患者(诊断时的平均[SD]年龄,59.8[15.6]岁;488[37.7%]为女性;1060[81.9%]为欧洲血统)。与标准方法相比,深度学习方法在癌症易感性基因中发现了更多的致病性变异患者(前列腺癌:198 例比 182 例;黑色素瘤:93 例比 74 例);敏感性(前列腺癌:94.7%比 87.1%[差异,7.6%;95%CI,2.2%至 13.1%];黑色素瘤:74.4%比 59.2%[差异,15.2%;95%CI,3.7%至 26.7%]),特异性(前列腺癌:64.0%比 36.0%[差异,28.0%;95%CI,1.4%至 54.6%];黑色素瘤:63.4%比 36.6%[差异,26.8%;95%CI,17.6%至 35.9%]),PPV(前列腺癌:95.7%比 91.9%[差异,3.8%;95%CI,-1.0%至 8.4%];黑色素瘤:54.4%比 35.4%[差异,19.0%;95%CI,9.1%至 28.9%])和 NPV(前列腺癌:59.3%比 25.0%[差异,34.3%;95%CI,10.9%至 57.6%];黑色素瘤:80.8%比 60.5%[差异,20.3%;95%CI,10.0%至 30.7%])。对于 ACMG 基因,两种方法在前列腺癌队列中的敏感性没有显著差异(94.9%比 90.6%[差异,4.3%;95%CI,-2.3%至 10.9%]),但深度学习方法在黑色素瘤队列中的敏感性更高(71.6%比 53.7%[差异,17.9%;95%CI,1.82%至 34.0%])。深度学习方法在孟德尔基因中的敏感性更高(前列腺癌:99.7%比 95.1%[差异,4.6%;95%CI,3.0%至 6.3%];黑色素瘤:91.7%比 86.2%[差异,5.5%;95%CI,2.2%至 8.8%])。

结论和相关性:在前列腺癌和黑色素瘤两个独立队列的便利样本中,与当前标准基因检测方法相比,使用深度学习进行种系基因检测与致病性变异的检测敏感性和特异性更高。需要进一步研究以了解这些发现与临床结果的相关性。

相似文献

3
Gene-based Confirmatory Germline Testing Following Tumor-only Sequencing of Prostate Cancer.
Eur Urol. 2023 Jan;83(1):29-38. doi: 10.1016/j.eururo.2022.08.028. Epub 2022 Sep 15.
5
Germline Mutations for Novel Candidate Predisposition Genes in Sporadic Schwannomatosis.
Clin Orthop Relat Res. 2020 Nov;478(11):2442-2450. doi: 10.1097/CORR.0000000000001239.
6
Germline Variants in Targeted Tumor Sequencing Using Matched Normal DNA.
JAMA Oncol. 2016 Jan;2(1):104-11. doi: 10.1001/jamaoncol.2015.5208.
7
Uptake, Results, and Outcomes of Germline Multiple-Gene Sequencing After Diagnosis of Breast Cancer.
JAMA Oncol. 2018 Aug 1;4(8):1066-1072. doi: 10.1001/jamaoncol.2018.0644.
8
Germline pathogenic variants in unselected Korean men with prostate cancer.
Investig Clin Urol. 2022 May;63(3):294-300. doi: 10.4111/icu.20220044.
9
Frequency of Pathogenic Germline Variants in Cancer-Susceptibility Genes in Patients With Osteosarcoma.
JAMA Oncol. 2020 May 1;6(5):724-734. doi: 10.1001/jamaoncol.2020.0197.
10
Germline DNA Repair Gene Mutations in Young-onset Prostate Cancer Cases in the UK: Evidence for a More Extensive Genetic Panel.
Eur Urol. 2019 Sep;76(3):329-337. doi: 10.1016/j.eururo.2019.01.050. Epub 2019 Feb 15.

引用本文的文献

1
Accurate human genome analysis with element avidity sequencing.
BMC Bioinformatics. 2025 Jul 25;26(1):194. doi: 10.1186/s12859-025-06191-4.
2
Progress and challenges of artificial intelligence in lung cancer clinical translation.
NPJ Precis Oncol. 2025 Jul 1;9(1):210. doi: 10.1038/s41698-025-00986-7.
3
Overcoming limitations to customize DeepVariant for domesticated animals with TrioTrain.
Genome Res. 2025 Aug 1;35(8):1859-1874. doi: 10.1101/gr.279542.124.
5
Genetic Alterations in HER2-Positive and Equivocal Breast Cancer by Immunohistochemistry.
Breast Cancer (Dove Med Press). 2025 Mar 12;17:253-263. doi: 10.2147/BCTT.S507189. eCollection 2025.
6
Correlation Between PIK3R1 Expression and Cell Growth in Human Breast Cancer Cell Line BT-474 and Clinical Outcomes.
World J Oncol. 2025 Feb;16(1):131-141. doi: 10.14740/wjon1986. Epub 2025 Jan 10.
7
Invited commentary: deep learning-methods to amplify epidemiologic data collection and analyses.
Am J Epidemiol. 2025 Feb 5;194(2):322-326. doi: 10.1093/aje/kwae215.
8
Artificial Intelligence in Oncology: Current Landscape, Challenges, and Future Directions.
Cancer Discov. 2024 May 1;14(5):711-726. doi: 10.1158/2159-8290.CD-23-1199.
9
Integrative Analysis of Germline Rare Variants in Clear and Non-clear Cell Renal Cell Carcinoma.
Eur Urol Open Sci. 2024 Mar 8;62:107-122. doi: 10.1016/j.euros.2024.02.006. eCollection 2024 Apr.
10
Development of a whole-slide-level segmentation-based dMMR/pMMR deep learning detector for colorectal cancer.
iScience. 2023 Nov 15;26(12):108468. doi: 10.1016/j.isci.2023.108468. eCollection 2023 Dec 15.

本文引用的文献

2
The mutational constraint spectrum quantified from variation in 141,456 humans.
Nature. 2020 May;581(7809):434-443. doi: 10.1038/s41586-020-2308-7. Epub 2020 May 27.
3
4
Calling Variants in the Clinic: Informed Variant Calling Decisions Based on Biological, Clinical, and Laboratory Variables.
Comput Struct Biotechnol J. 2019 Apr 8;17:561-569. doi: 10.1016/j.csbj.2019.04.002. eCollection 2019.
6
A guide to deep learning in healthcare.
Nat Med. 2019 Jan;25(1):24-29. doi: 10.1038/s41591-018-0316-z. Epub 2019 Jan 7.
7
Identifying facial phenotypes of genetic disorders using deep learning.
Nat Med. 2019 Jan;25(1):60-64. doi: 10.1038/s41591-018-0279-0. Epub 2019 Jan 7.
8
Standard operating procedure for somatic variant refinement of sequencing data with paired tumor and normal samples.
Genet Med. 2019 Apr;21(4):972-981. doi: 10.1038/s41436-018-0278-z. Epub 2018 Oct 5.
9
A universal SNP and small-indel variant caller using deep neural networks.
Nat Biotechnol. 2018 Nov;36(10):983-987. doi: 10.1038/nbt.4235. Epub 2018 Sep 24.
10
Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation.
N Engl J Med. 2018 Aug 23;379(8):753-763. doi: 10.1056/NEJMoa1802905. Epub 2018 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验