Suppr超能文献

增强纳米颗粒穿透气道黏液的能力,以提高肺部的药物递送效果。

Enhancing nanoparticle penetration through airway mucus to improve drug delivery efficacy in the lung.

机构信息

The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Expert Opin Drug Deliv. 2021 May;18(5):595-606. doi: 10.1080/17425247.2021.1854222. Epub 2020 Dec 7.

Abstract

: Airway mucus gel layer serves as a key delivery barrier that limits the performance of inhaled drug delivery nanoparticles. Conventional nanoparticles are readily trapped by the airway mucus and rapidly cleared from the lung via mucus clearance mechanisms. These nanoparticles cannot distribute throughout the lung airways, long-reside in the lung and/or reach the airway epithelium. To address this challenge, strategies to enhance particle penetration through the airway mucus have been developed and proof-of-concept has been established using mucus model systems..: In this review, we first overview the biochemical and biophysical characteristics that render the airway mucus a challenging delivery barrier. We then introduce strategies to improve particle penetration through the airway mucus. Specifically, we walk through two classes of approaches, including modification of physicochemical properties of nanoparticles and modulation of barrier properties of airway mucus.: State-of-the-art strategies to overcome the airway mucus barrier have been introduced and experimentally validated. However, data should be interpreted in the comprehensive context of therapeutic delivery from the site of administration to the final destination to determine clinically-relevant approaches. Further, safety should be carefully monitored, particularly when it comes to mucus-altering strategies that may perturb physiological functions of airway mucus.

摘要

: 气道黏液凝胶层作为一个关键的输送屏障,限制了吸入式药物输送纳米颗粒的性能。传统的纳米颗粒很容易被气道黏液捕获,并通过黏液清除机制迅速从肺部清除。这些纳米颗粒不能分布在整个肺部气道中,不能在肺部长时间停留和/或到达气道上皮。为了解决这个挑战,已经开发了增强粒子穿透气道黏液的策略,并使用黏液模型系统证明了其概念。: 在这篇综述中,我们首先概述了使气道黏液成为具有挑战性的输送屏障的生化和物理特性。然后,我们介绍了改善粒子穿透气道黏液的策略。具体来说,我们介绍了两类方法,包括纳米颗粒物理化学性质的修饰和气道黏液屏障性质的调节。: 已经引入了克服气道黏液屏障的最新策略,并进行了实验验证。然而,应该从给药部位到最终目的地的治疗输送的综合角度来解释数据,以确定临床相关的方法。此外,应该仔细监测安全性,特别是对于可能扰乱气道黏液生理功能的改变黏液的策略。

相似文献

1
Enhancing nanoparticle penetration through airway mucus to improve drug delivery efficacy in the lung.
Expert Opin Drug Deliv. 2021 May;18(5):595-606. doi: 10.1080/17425247.2021.1854222. Epub 2020 Dec 7.
2
Nanoparticle-Mediated Strategies for Enhanced Drug Penetration and Retention in the Airway Mucosa.
Pharmaceutics. 2023 Oct 13;15(10):2457. doi: 10.3390/pharmaceutics15102457.
3
Untangling Mucosal Drug Delivery: Engineering, Designing, and Testing Nanoparticles to Overcome the Mucus Barrier.
ACS Biomater Sci Eng. 2022 Apr 11;8(4):1396-1426. doi: 10.1021/acsbiomaterials.2c00047. Epub 2022 Mar 16.
4
Lung gene therapy with highly compacted DNA nanoparticles that overcome the mucus barrier.
J Control Release. 2014 Mar 28;178:8-17. doi: 10.1016/j.jconrel.2014.01.007. Epub 2014 Jan 14.
5
Mechanisms and strategies to enhance penetration during intravesical drug therapy for bladder cancer.
J Control Release. 2023 Feb;354:69-79. doi: 10.1016/j.jconrel.2023.01.001. Epub 2023 Jan 4.
6
Airway mucus in pulmonary diseases: Muco-adhesive and muco-penetrating particles to overcome the airway mucus barriers.
Int J Pharm. 2023 Mar 5;634:122661. doi: 10.1016/j.ijpharm.2023.122661. Epub 2023 Feb 1.
8
Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation.
Sci Adv. 2017 Apr 5;3(4):e1601556. doi: 10.1126/sciadv.1601556. eCollection 2017 Apr.
9
Technological strategies to estimate and control diffusive passage times through the mucus barrier in mucosal drug delivery.
Adv Drug Deliv Rev. 2018 Jan 15;124:64-81. doi: 10.1016/j.addr.2017.12.002. Epub 2017 Dec 12.
10
Hybrid Lipid/Polymer Nanoparticles to Tackle the Cystic Fibrosis Mucus Barrier in siRNA Delivery to the Lungs: Does PEGylation Make the Difference?
ACS Appl Mater Interfaces. 2022 Feb 16;14(6):7565-7578. doi: 10.1021/acsami.1c14975. Epub 2022 Feb 2.

引用本文的文献

1
Inhalable Nanomaterial Discoveries for Lung Cancer Therapy: A Review.
Pharmaceutics. 2025 Jul 31;17(8):996. doi: 10.3390/pharmaceutics17080996.
2
Tailored Levofloxacin Incorporated Extracellular Matrix Nanoparticles for Pulmonary Infections.
Int J Mol Sci. 2025 Aug 1;26(15):7453. doi: 10.3390/ijms26157453.
3
Inhalable nanoparticle-based delivery systems for the treatment of pulmonary infections: and barrier-overcoming strategies.
Drug Deliv. 2025 Dec;32(1):2544683. doi: 10.1080/10717544.2025.2544683. Epub 2025 Aug 11.
6
Exploring the Potential of PLGA Nanoparticles for Enhancing Pulmonary Drug Delivery.
Mol Pharm. 2025 Jul 7;22(7):3542-3562. doi: 10.1021/acs.molpharmaceut.5c00118. Epub 2025 Jun 6.
7
Silicon Carbide Nanowires Impair Mucociliary Clearance-Mediated Innate Immunity in Primary Human Bronchial Epithelial Cells.
ACS Nano. 2025 Jun 17;19(23):21426-21445. doi: 10.1021/acsnano.5c01981. Epub 2025 Jun 6.
8
Association Between Ethylene Oxide Exposure and Complete Edentulism in United States Adults.
Life (Basel). 2025 May 3;15(5):740. doi: 10.3390/life15050740.
9
Mucoadhesive-to-Mucopenetrating Nanoparticles for Mucosal Drug Delivery: A Mini Review.
Int J Nanomedicine. 2025 Feb 20;20:2241-2252. doi: 10.2147/IJN.S505427. eCollection 2025.
10
Biopolymeric Inhalable Dry Powders for Pulmonary Drug Delivery.
Pharmaceuticals (Basel). 2024 Dec 4;17(12):1628. doi: 10.3390/ph17121628.

本文引用的文献

1
Antibody-mediated trapping in biological hydrogels is governed by sugar-sugar hydrogen bonds.
Acta Biomater. 2020 Apr 15;107:91-101. doi: 10.1016/j.actbio.2020.03.002. Epub 2020 Mar 5.
2
Transport and fate of inhaled particles after deposition onto the airway surface liquid: A 3D numerical study.
Comput Biol Med. 2020 Feb;117:103595. doi: 10.1016/j.compbiomed.2019.103595. Epub 2020 Jan 7.
3
Recent Advancements in Using Polymers for Intestinal Mucoadhesion and Mucopenetration.
Macromol Biosci. 2020 Mar;20(3):e1900342. doi: 10.1002/mabi.201900342. Epub 2020 Feb 11.
5
A free-floating mucin layer to investigate the effect of the local microenvironment in lungs on mucin-nanoparticle interactions.
Acta Biomater. 2020 Mar 1;104:115-123. doi: 10.1016/j.actbio.2020.01.014. Epub 2020 Jan 13.
6
Antibody-Mediated Immobilization of Virions in Mucus.
Bull Math Biol. 2019 Oct;81(10):4069-4099. doi: 10.1007/s11538-019-00653-6. Epub 2019 Aug 29.
7
Nanoparticle diffusion in spontaneously expectorated sputum as a biophysical tool to probe disease severity in COPD.
Eur Respir J. 2019 Aug 1;54(2). doi: 10.1183/13993003.00088-2019. Print 2019 Aug.
8
Widespread gene transfer to malignant gliomas with In vitro-to-In vivo correlation.
J Control Release. 2019 Jun 10;303:1-11. doi: 10.1016/j.jconrel.2019.04.010. Epub 2019 Apr 9.
9
Mucopenetration and biocompatibility of polydopamine surfaces for delivery in an Ex Vivo porcine bladder.
J Control Release. 2019 Apr 28;300:161-173. doi: 10.1016/j.jconrel.2019.02.041. Epub 2019 Mar 7.
10
Polydopamine Coating Enhances Mucopenetration and Cell Uptake of Nanoparticles.
ACS Appl Mater Interfaces. 2019 Feb 6;11(5):4777-4789. doi: 10.1021/acsami.8b18107. Epub 2019 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验