Suppr超能文献

CRISPR FokI Dead Cas9 系统:基因组工程中的原理与应用。

CRISPR FokI Dead Cas9 System: Principles and Applications in Genome Engineering.

机构信息

College of Health and Life Sciences, Division of Biological and Biomedical Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O.Box 34110, Qatar.

出版信息

Cells. 2020 Nov 21;9(11):2518. doi: 10.3390/cells9112518.

Abstract

The identification of the robust clustered regularly interspersed short palindromic repeats (CRISPR) associated endonuclease (Cas9) system gene-editing tool has opened up a wide range of potential therapeutic applications that were restricted by more complex tools, including zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). Nevertheless, the high frequency of CRISPR system off-target activity still limits its applications, and, thus, advanced strategies for highly specific CRISPR/Cas9-mediated genome editing are continuously under development including CRISPR-FokI dead Cas9 (fdCas9). fdCas9 system is derived from linking a FokI endonuclease catalytic domain to an inactive Cas9 protein and requires a pair of guide sgRNAs that bind to the sense and antisense strands of the DNA in a protospacer adjacent motif (PAM)-out orientation, with a defined spacer sequence range around the target site. The dimerization of FokI domains generates DNA double-strand breaks, which activates the DNA repair machinery and results in genomic edit. So far, all the engineered fdCas9 variants have shown promising gene-editing activities in human cells when compared to other platforms. Herein, we review the advantages of all published variants of fdCas9 and their current applications in genome engineering.

摘要

经鉴定,稳健的簇状规律间隔短回文重复序列(CRISPR)相关内切酶(Cas9)系统基因编辑工具为广泛的潜在治疗应用打开了大门,这些应用受到更复杂工具的限制,包括锌指核酸酶(ZFNs)和转录激活因子样效应核酸酶(TALENs)。然而,CRISPR 系统脱靶活性的高频率仍然限制了其应用,因此,用于高度特异性 CRISPR/Cas9 介导的基因组编辑的先进策略正在不断开发中,包括 CRISPR-FokI 失活 Cas9(fdCas9)。fdCas9 系统源自将 FokI 内切酶催化结构域与无活性 Cas9 蛋白连接,并需要一对 sgRNA,这些 sgRNA 结合在原间隔区邻近基序(PAM)的方向上的 DNA 的有义链和反义链上,在靶位点周围具有定义的间隔序列范围。FokI 结构域的二聚化产生 DNA 双链断裂,激活 DNA 修复机制,导致基因组编辑。到目前为止,与其他平台相比,所有在人类细胞中设计的工程化 fdCas9 变体都显示出有希望的基因编辑活性。在此,我们综述了所有已发表的 fdCas9 变体的优势及其在基因组工程中的当前应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d7d/7700487/9ea532959ce5/cells-09-02518-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验