Suppr超能文献

免疫肿瘤学中预测性生物标志物的发展态势,重点关注空间技术。

The evolving landscape of predictive biomarkers in immuno-oncology with a focus on spatial technologies.

作者信息

Sadeghi Rad Habib, Bazaz Sajad Razavi, Monkman James, Ebrahimi Warkiani Majid, Rezaei Nima, O'Byrne Ken, Kulasinghe Arutha

机构信息

School of Medicine Tehran University of Medical Sciences Tehran Iran.

School of Biomedical Engineering University of Technology Sydney Sydney NSW Australia.

出版信息

Clin Transl Immunology. 2020 Nov 22;9(11):e1215. doi: 10.1002/cti2.1215. eCollection 2020.

Abstract

Immunotherapies have shown long-lasting and unparalleled responses for cancer patients compared to conventional therapy. However, they seem to only be effective in a subset of patients. Therefore, it has become evident that a greater understanding of the tumor microenvironment (TME) is required to understand the nuances which may be at play for a favorable outcome to therapy. The immune contexture of the TME is an important factor in dictating how well a tumor may respond to immune checkpoint inhibitors. While traditional immunohistochemistry techniques allow for the profiling of cells in the tumor, this is often lost when tumors are analysed using bulk tissue genomic approaches. Moreover, the actual cellular proportions, cellular heterogeneity and deeper spatial distribution are lacking in characterisation. Advances in tissue interrogation technologies have given rise to spatially resolved characterisation of the TME. This review aims to provide an overview of the current methodologies that are used to profile the TME, which may provide insights into the immunopathology associated with a favorable outcome to immunotherapy.

摘要

与传统疗法相比,免疫疗法已在癌症患者中显示出持久且无与伦比的疗效。然而,它们似乎仅对一部分患者有效。因此,越来越明显的是,需要更深入地了解肿瘤微环境(TME),以理解可能对治疗产生有利结果起作用的细微差别。TME的免疫结构是决定肿瘤对免疫检查点抑制剂反应程度的一个重要因素。虽然传统的免疫组织化学技术可以对肿瘤中的细胞进行分析,但当使用大块组织基因组方法分析肿瘤时,这一信息往往会丢失。此外,实际的细胞比例、细胞异质性和更深层次的空间分布缺乏特征描述。组织检测技术的进步使得对TME进行空间分辨特征描述成为可能。本综述旨在概述目前用于分析TME的方法,这些方法可能为与免疫治疗有利结果相关的免疫病理学提供见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e5f/7680923/e862d716d5fc/CTI2-9-e1215-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验