Laboratory of Clinical Biochemistry of Tianjin Third Central Hospital, Key Laboratory of Artificial Cell, Institute of Hepatobiliary Disease, Tianjin City, 300170, China.
Laboratory of Clinical Biochemistry, Tianjin Medical University, Tianjin City, 300070, China.
Acta Biochim Pol. 2020 Dec 1;67(4):501-508. doi: 10.18388/abp.2020_5225.
Pancreatic cancer is one of the most malignant tumors of the digestive system, with insidious, rapid onset and high mortality. The 5-year survival rate is only 10%. Therefore, in-depth exploration of the potential mechanism affecting the prognosis of pancreatic cancer, and search for biomarkers that can effectively predict the prognosis of pancreatic cancer are of practical clinical importance. The mRNA sequencing data, miRNA sequencing data, methylation data and SNP data of pancreatic cancer patients available in The Cancer Genome Atlas (TCGA) were used for analysis to identify biomarkers that significantly affect the prognosis for the patients. Finally, a prognostic prediction model was developed using principal component analysis (PCA) method. The genes that significantly affected the prognosis of pancreatic cancer were as follows: 5 DmiRNAs (hsa-mir-1179, hsa-mir-1224, hsa-mir-1251, hsa-mir-129-1 and hsa-mir-129-2), 6 DmRNAsandDMsandMethyCor database entries (MAPK8IP2, CPE, DPP6, MSI1, IL20RB and S100A2), and FMN2 gene from differential expressed mRNAs and differential single-nucleotide polymorphism (DmRNAsandDSNPs) database. Prognostic index (PI)=∑iwi xi - 0.717716. A patient was predicted as high/low risk if the PI was larger/smaller than 0.034045. Our study resulted in a comprehensive prognostic model for pancreatic cancer patients based on multi-omics analysis, which could offer better guidance for the clinical management of patients with early-stage pancreatic cancer.
胰腺癌是消化系统最恶性的肿瘤之一,具有隐匿、发病迅速、死亡率高的特点。5 年生存率仅为 10%。因此,深入探讨影响胰腺癌预后的潜在机制,寻找能有效预测胰腺癌预后的生物标志物具有重要的临床实用价值。本研究利用美国癌症基因组图谱(TCGA)中胰腺癌患者的 mRNA 测序数据、miRNA 测序数据、甲基化数据和 SNP 数据进行分析,以确定对患者预后有显著影响的生物标志物。最后,采用主成分分析(PCA)方法建立了预后预测模型。显著影响胰腺癌预后的基因有:5 个 DmiRNAs(hsa-mir-1179、hsa-mir-1224、hsa-mir-1251、hsa-mir-129-1 和 hsa-mir-129-2)、6 个 DmRNAs 和 DMethyCor 数据库条目(MAPK8IP2、CPE、DPP6、MSI1、IL20RB 和 S100A2)以及差异表达 mRNAs 和差异单核苷酸多态性(DmRNAsandDSNPs)数据库中的 FMN2 基因。预后指数(PI)=∑iwi xi-0.717716。如果 PI 大于/小于 0.034045,则预测患者为高/低风险。我们的研究基于多组学分析为胰腺癌患者建立了一个全面的预后模型,可为早期胰腺癌患者的临床管理提供更好的指导。