Suppr超能文献

将皮质萎缩与推测为血管源性的脑白质高信号相关联。

Linking cortical atrophy to white matter hyperintensities of presumed vascular origin.

机构信息

Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

出版信息

J Cereb Blood Flow Metab. 2021 Jul;41(7):1682-1691. doi: 10.1177/0271678X20974170. Epub 2020 Dec 1.

Abstract

We examined the relationship between white matter hyperintensities (WMH) and cortical neurodegeneration in cerebral small vessel disease (CSVD) by investigating whether cortical thickness is a remote effect of WMH through structural fiber tract connectivity in a population at increased risk of CSVD. We measured cortical thickness on T1-weighted images and segmented WMH on FLAIR images in 930 participants of a population-based cohort study at baseline. DWI-derived whole-brain probabilistic tractography was used to define WMH connectivity to cortical regions. Linear mixed-effects models were applied to analyze the relationship between cortical thickness and connectivity to WMH. Factors associated with cortical thickness (age, sex, hemisphere, region, individual differences in cortical thickness) were added as covariates. Median age was 64 [IQR 46-76] years. Visual inspection of surface maps revealed distinct connectivity patterns of cortical regions to WMH. WMH connectivity to the cortex was associated with reduced cortical thickness ( = 0.009) after controlling for covariates. This association was found for periventricular WMH ( = 0.001) only. Our results indicate an association between WMH and cortical thickness via connecting fiber tracts. The results imply a mechanism of secondary neurodegeneration in cortical regions distant, yet connected to subcortical vascular lesions, which appears to be driven by periventricular WMH.

摘要

我们通过研究皮质厚度是否通过结构纤维束连接性作为 WMH 的远程效应,来考察脑小血管病 (CSVD) 中脑白质高信号(WMH)与皮质神经退行性变之间的关系。我们在基于人群的队列研究的 930 名参与者的基线时,在 T1 加权图像上测量皮质厚度,并在 FLAIR 图像上分割 WMH。弥散张量成像(DWI)衍生的全脑概率纤维束追踪用于定义 WMH 与皮质区域的连接。线性混合效应模型用于分析皮质厚度与 WMH 连接之间的关系。将与皮质厚度相关的因素(年龄、性别、半球、区域、皮质厚度的个体差异)作为协变量添加。中位年龄为 64 岁 [四分位距(IQR)46-76]。对表面图的直观检查显示出皮质区域与 WMH 的不同连接模式。在控制协变量后,WMH 与皮质的连接与皮质厚度降低相关( = 0.009)。这种关联仅在脑室周围 WMH 中发现( = 0.001)。我们的结果表明 WMH 和皮质厚度之间存在通过连接纤维束的关联。这些结果表明,在远离皮质下血管病变的皮质区域中存在继发性神经退行性变的机制,这种机制似乎是由脑室周围的 WMH 驱动的。

相似文献

1
Linking cortical atrophy to white matter hyperintensities of presumed vascular origin.
J Cereb Blood Flow Metab. 2021 Jul;41(7):1682-1691. doi: 10.1177/0271678X20974170. Epub 2020 Dec 1.
2
Regional cortical thinning, demyelination and iron loss in cerebral small vessel disease.
Brain. 2023 Nov 2;146(11):4659-4673. doi: 10.1093/brain/awad220.
3
Relationship between white matter hyperintensities, cortical thickness, and cognition.
Stroke. 2015 Feb;46(2):425-32. doi: 10.1161/STROKEAHA.114.007146. Epub 2015 Jan 8.
5
Gray and white matter changes linking cerebral small vessel disease to gait disturbances.
Neurology. 2016 Mar 29;86(13):1199-207. doi: 10.1212/WNL.0000000000002516. Epub 2016 Mar 2.
8
The effect of white matter hyperintensities on cognition is mediated by cortical atrophy.
Neurobiol Aging. 2018 Apr;64:25-32. doi: 10.1016/j.neurobiolaging.2017.12.006. Epub 2017 Dec 16.

引用本文的文献

5
Variations in perfusion detectable in advance of microstructure in white matter aging.
Geroscience. 2025 Jul 22. doi: 10.1007/s11357-025-01787-3.
8
White matter injuries mediate brain age effects on cognitive function in cerebral small vessel disease.
Neuroradiology. 2025 Mar;67(3):613-622. doi: 10.1007/s00234-025-03568-3. Epub 2025 Feb 17.

本文引用的文献

1
Rationale and Design of the Hamburg City Health Study.
Eur J Epidemiol. 2020 Feb;35(2):169-181. doi: 10.1007/s10654-019-00577-4. Epub 2019 Nov 8.
2
MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation.
Neuroimage. 2019 Nov 15;202:116137. doi: 10.1016/j.neuroimage.2019.116137. Epub 2019 Aug 29.
3
Characterization of White Matter Hyperintensities in Large-Scale MRI-Studies.
Front Neurol. 2019 Mar 26;10:238. doi: 10.3389/fneur.2019.00238. eCollection 2019.
4
Cortical atrophy and transcallosal diaschisis following isolated subcortical stroke.
J Cereb Blood Flow Metab. 2020 Mar;40(3):611-621. doi: 10.1177/0271678X19831583. Epub 2019 Feb 20.
5
WMH and long-term outcomes in ischemic stroke: A systematic review and meta-analysis.
Neurology. 2019 Mar 19;92(12):e1298-e1308. doi: 10.1212/WNL.0000000000007142. Epub 2019 Feb 15.
6
White matter lesions: Spatial heterogeneity, links to risk factors, cognition, genetics, and atrophy.
Neurology. 2018 Sep 4;91(10):e964-e975. doi: 10.1212/WNL.0000000000006116. Epub 2018 Aug 3.
7
Cerebral small vessel disease: from a focal to a global perspective.
Nat Rev Neurol. 2018 Jul;14(7):387-398. doi: 10.1038/s41582-018-0014-y.
8
Age-related changes in cortical and subcortical structures of healthy adult brains: A surface-based morphometry study.
J Magn Reson Imaging. 2019 Jan;49(1):152-163. doi: 10.1002/jmri.26037. Epub 2018 Apr 20.
9
Quantifying indices of short- and long-range white matter connectivity at each cortical vertex.
PLoS One. 2017 Nov 15;12(11):e0187493. doi: 10.1371/journal.pone.0187493. eCollection 2017.
10
Classification and characterization of periventricular and deep white matter hyperintensities on MRI: A study in older adults.
Neuroimage. 2018 Apr 15;170:174-181. doi: 10.1016/j.neuroimage.2017.03.024. Epub 2017 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验