Suppr超能文献

绘制可降解激酶组图谱为加快降解剂开发提供资源。

Mapping the Degradable Kinome Provides a Resource for Expedited Degrader Development.

机构信息

Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.

Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.

出版信息

Cell. 2020 Dec 10;183(6):1714-1731.e10. doi: 10.1016/j.cell.2020.10.038. Epub 2020 Dec 3.

Abstract

Targeted protein degradation (TPD) refers to the use of small molecules to induce ubiquitin-dependent degradation of proteins. TPD is of interest in drug development, as it can address previously inaccessible targets. However, degrader discovery and optimization remains an inefficient process due to a lack of understanding of the relative importance of the key molecular events required to induce target degradation. Here, we use chemo-proteomics to annotate the degradable kinome. Our expansive dataset provides chemical leads for ∼200 kinases and demonstrates that the current practice of starting from the highest potency binder is an ineffective method for discovering active compounds. We develop multitargeted degraders to answer fundamental questions about the ubiquitin proteasome system, uncovering that kinase degradation is p97 dependent. This work will not only fuel kinase degrader discovery, but also provides a blueprint for evaluating targeted degradation across entire gene families to accelerate understanding of TPD beyond the kinome.

摘要

靶向蛋白降解(TPD)是指利用小分子诱导蛋白质的泛素依赖性降解。TPD 在药物开发中很有意义,因为它可以解决以前无法触及的靶点。然而,由于缺乏对诱导靶标降解所需的关键分子事件的相对重要性的理解,降解剂的发现和优化仍然是一个效率低下的过程。在这里,我们使用化学蛋白质组学来注释可降解的激酶组。我们广泛的数据集为约 200 个激酶提供了化学线索,并表明从最高效结合物开始的当前实践是发现活性化合物的无效方法。我们开发了多靶向降解剂来回答有关泛素蛋白酶体系统的基本问题,揭示了激酶降解依赖于 p97。这项工作不仅将推动激酶降解剂的发现,还为评估整个基因家族的靶向降解提供了蓝图,以加速对 TPD 的理解,超越激酶组。

相似文献

1
Mapping the Degradable Kinome Provides a Resource for Expedited Degrader Development.
Cell. 2020 Dec 10;183(6):1714-1731.e10. doi: 10.1016/j.cell.2020.10.038. Epub 2020 Dec 3.
2
Quantitative Measurement of Rate of Targeted Protein Degradation.
ACS Chem Biol. 2024 Jul 19;19(7):1604-1615. doi: 10.1021/acschembio.4c00262. Epub 2024 Jul 9.
3
Ligandability of E3 Ligases for Targeted Protein Degradation Applications.
Biochemistry. 2023 Feb 7;62(3):588-600. doi: 10.1021/acs.biochem.1c00464. Epub 2021 Sep 2.
4
Chemo-proteomics exploration of HDAC degradability by small molecule degraders.
Cell Chem Biol. 2021 Oct 21;28(10):1514-1527.e4. doi: 10.1016/j.chembiol.2021.07.002. Epub 2021 Jul 26.
5
Breaking Bad Proteins-Discovery Approaches and the Road to Clinic for Degraders.
Cells. 2024 Mar 26;13(7):578. doi: 10.3390/cells13070578.
6
Perspectives on the development of first-in-class protein degraders.
Future Med Chem. 2021 Jul;13(14):1203-1226. doi: 10.4155/fmc-2021-0033. Epub 2021 May 21.
7
Targeted protein degradation and the enzymology of degraders.
Curr Opin Chem Biol. 2018 Jun;44:47-55. doi: 10.1016/j.cbpa.2018.05.004. Epub 2018 Jun 7.
8
Chemoproteomics-enabled discovery of a covalent molecular glue degrader targeting NF-κB.
Cell Chem Biol. 2023 Apr 20;30(4):394-402.e9. doi: 10.1016/j.chembiol.2023.02.008. Epub 2023 Mar 9.
9
Extrapolating Lessons from Targeted Protein Degradation to Other Proximity-Inducing Drugs.
ACS Chem Biol. 2024 Oct 18;19(10):2089-2102. doi: 10.1021/acschembio.4c00191. Epub 2024 Sep 12.
10
A synthetic KLHL20 ligand to validate CUL3 as a potent E3 ligase for targeted protein degradation.
Genes Dev. 2022 Sep 1;36(17-18):1031-1042. doi: 10.1101/gad.349717.122. Epub 2022 Nov 3.

引用本文的文献

1
Dual functionality of MDM2 in PROTACs expands the horizons of targeted protein degradation.
Biomark Res. 2025 Aug 27;13(1):111. doi: 10.1186/s40364-025-00826-7.
2
Exploiting targeted degradation of cyclins and cyclin-dependent kinases for cancer therapeutics: a review.
J Zhejiang Univ Sci B. 2025 Aug 25;26(8):713-739. doi: 10.1631/jzus.B2500021.
4
Synthesis and structure-activity relationships of targeted protein degraders for the understudied kinase NEK9.
Curr Res Chem Biol. 2021;1. doi: 10.1016/j.crchbi.2021.100008. Epub 2021 Aug 28.
6
FDA-approved kinase inhibitors in PROTAC design, development and synthesis.
J Enzyme Inhib Med Chem. 2025 Dec;40(1):2542357. doi: 10.1080/14756366.2025.2542357. Epub 2025 Aug 12.
7
Development of Dual Aurora-A and Aurora-B Degrading PROTACs for -Amplified Neuroblastoma.
ChemMedChem. 2025 Mar 3;20(5). doi: 10.1002/cmdc.202400703. Epub 2024 Nov 20.
8
Unveiling the hidden interactome of CRBN molecular glues.
Nat Commun. 2025 Jul 24;16(1):6831. doi: 10.1038/s41467-025-62099-w.
9
Development of PROTACs for targeted degradation of oncogenic TRK fusions.
bioRxiv. 2025 Jun 24:2025.06.18.660465. doi: 10.1101/2025.06.18.660465.
10
Assessing the Suitability of Deubiquitylases As Substrates For Targeted Protein Degradation.
bioRxiv. 2025 Jun 14:2025.06.13.659525. doi: 10.1101/2025.06.13.659525.

本文引用的文献

1
Proteomics-Based Identification of DUB Substrates Using Selective Inhibitors.
Cell Chem Biol. 2021 Jan 21;28(1):78-87.e3. doi: 10.1016/j.chembiol.2020.09.005. Epub 2020 Oct 1.
2
Tubulin Resists Degradation by Cereblon-Recruiting PROTACs.
Cells. 2020 Apr 27;9(5):1083. doi: 10.3390/cells9051083.
3
Critical Assessment of Targeted Protein Degradation as a Research Tool and Pharmacological Modality.
Trends Pharmacol Sci. 2020 May;41(5):305-317. doi: 10.1016/j.tips.2020.02.006. Epub 2020 Mar 26.
4
CSK promotes innate immune response to DNA virus by phosphorylating MITA.
Biochem Biophys Res Commun. 2020 May 21;526(1):199-205. doi: 10.1016/j.bbrc.2020.03.069. Epub 2020 Mar 19.
5
Proteolysis-Targeting Chimeras as Therapeutics and Tools for Biological Discovery.
Cell. 2020 Apr 2;181(1):102-114. doi: 10.1016/j.cell.2019.11.031. Epub 2020 Jan 16.
6
Exploring Targeted Degradation Strategy for Oncogenic KRAS.
Cell Chem Biol. 2020 Jan 16;27(1):19-31.e6. doi: 10.1016/j.chembiol.2019.12.006. Epub 2019 Dec 26.
7
Properties of FDA-approved small molecule protein kinase inhibitors: A 2020 update.
Pharmacol Res. 2020 Feb;152:104609. doi: 10.1016/j.phrs.2019.104609. Epub 2019 Dec 17.
8
Development of selective mono or dual PROTAC degrader probe of CDK isoforms.
Eur J Med Chem. 2020 Feb 1;187:111952. doi: 10.1016/j.ejmech.2019.111952. Epub 2019 Dec 6.
9
Structure-Based Design of a Macrocyclic PROTAC.
Angew Chem Int Ed Engl. 2020 Jan 20;59(4):1727-1734. doi: 10.1002/anie.201914396. Epub 2019 Dec 12.
10
Development and Characterization of a Wee1 Kinase Degrader.
Cell Chem Biol. 2020 Jan 16;27(1):57-65.e9. doi: 10.1016/j.chembiol.2019.10.013. Epub 2019 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验