Suppr超能文献

玉米 bHLH55 通过直接调控 GDP-甘露糖途径基因来调节抗坏血酸(AsA)的生物合成,从而正向调控耐盐性。

Maize bHLH55 functions positively in salt tolerance through modulation of AsA biosynthesis by directly regulating GDP-mannose pathway genes.

机构信息

Ministry of Agriculture Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, School of Life Sciences, Nantong University, 226019, China.

College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.

出版信息

Plant Sci. 2021 Jan;302:110676. doi: 10.1016/j.plantsci.2020.110676. Epub 2020 Oct 20.

Abstract

Ascorbic acid (AsA) is an antioxidant and enzyme co-factor that is vital to plant development and abiotic stress tolerance. However, the regulation mechanisms of AsA biosynthesis in plants remain poorly understood. Here, we report a basic helix-loop-helix 55 (ZmbHLH55) transcription factor that regulates AsA biosynthesis in maize. Analysis of publicly available transcriptomic data revealed that ZmbHLH55 is co-expressed with several genes of the GDP-mannose pathway. Experimental data showed that ZmbHLH55 forms homodimers localized to the cell nuclei, and it exhibits DNA binding and transactivation activity in yeast. Under salt stress conditions, knock down mutant (zmbhlh55) in maize accumulated lower levels of AsA compared with wild type, accompanied by lower antioxidant enzymes activity, shorter root length, and higher malondialdehyde (MDA) level. Gene expression data from the WT and zmbhlh55 mutant, showed that ZmbHLH55 positively regulates the expression of ZmPGI2, ZmGME1, and ZmGLDH, but negatively regulates ZmGMP1 and ZmGGP. Furthermore, ZmbHLH55-overexpressing Arabidopsis, under salt conditions, showed higher AsA levels, increased rates of germination, and elevated antioxidant enzyme activities. In conclusion, these results have identified previously unknown regulation mechanisms for AsA biosynthesis, indicating that ZmbHLH55 may be a potential candidate to enhance plant salt stress tolerance in the future.

摘要

抗坏血酸(AsA)是一种抗氧化剂和酶辅因子,对植物发育和非生物胁迫耐受至关重要。然而,植物中 AsA 生物合成的调节机制仍知之甚少。在这里,我们报告了一个基本螺旋-环-螺旋 55(ZmbHLH55)转录因子,它调节玉米中的 AsA 生物合成。对公开可用的转录组数据的分析表明,ZmbHLH55与 GDP-甘露糖途径的几个基因共表达。实验数据表明,ZmbHLH55形成同源二聚体,定位于细胞核,并在酵母中表现出 DNA 结合和转录激活活性。在盐胁迫条件下,与野生型相比,玉米中的敲低突变体(zmbhlh55)积累的 AsA 水平较低,同时抗氧化酶活性较低、根长较短、丙二醛(MDA)水平较高。WT 和 zmbhlh55 突变体的基因表达数据表明,ZmbHLH55 正向调节 ZmPGI2、ZmGME1 和 ZmGLDH 的表达,但负向调节 ZmGMP1 和 ZmGGP。此外,在盐条件下过表达 ZmbHLH55 的拟南芥表现出较高的 AsA 水平、更高的萌发率和增强的抗氧化酶活性。总之,这些结果确定了 AsA 生物合成的以前未知的调节机制,表明 ZmbHLH55 可能是未来增强植物耐盐性的潜在候选基因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验