Suppr超能文献

从植物源萜类内酯骨架中开发潜在的抗肿瘤药物。

Development of Potential Antitumor Agents from the Scaffolds of Plant-Derived Terpenoid Lactones.

机构信息

Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States.

出版信息

J Med Chem. 2020 Dec 24;63(24):15410-15448. doi: 10.1021/acs.jmedchem.0c01449. Epub 2020 Dec 8.

Abstract

Naturally occurring terpenoid lactones and their synthetic derivatives have attracted increasing interest for their promising antitumor activity and potential utilization in the discovery and design of new antitumor agents. In the present perspective article, selected plant-derived five-membered γ-lactones and six-membered δ-lactones that occur with terpenoid scaffolds are reviewed, with their structures, cancer cell line cytotoxicity and in vivo antitumor activity, structure-activity relationships, mechanism of action, and the potential for developing cancer chemotherapeutic agents discussed in each case. The compounds presented include artemisinin (ART, ), parthenolide (PTL, ), thapsigargin (TPG, ), andrographolide (AGL, ), ginkgolide B (GKL B, ), jolkinolide B (JKL B, ), nagilactone E (NGL E, ), triptolide (TPL, ), bruceantin (BRC, ), dichapetalin A (DCT A, ), and limonin (LMN, ), and their naturally occurring analogues and synthetic derivatives. It is hoped that this contribution will be supportive of the future development of additional efficacious anticancer agents derived from natural products.

摘要

天然萜类内酯及其合成衍生物因其有希望的抗肿瘤活性和在发现和设计新型抗肿瘤药物方面的潜在应用而引起了越来越多的关注。在本综述文章中,对具有萜类骨架的植物来源的五元γ-内酯和六元δ-内酯进行了综述,讨论了它们的结构、癌细胞系细胞毒性和体内抗肿瘤活性、构效关系、作用机制以及开发癌症化疗药物的潜力。所介绍的化合物包括青蒿素(ART, )、紫草酸内酯(PTL, )、他普汀(TPG, )、穿心莲内酯(AGL, )、银杏内酯 B(GKL B, )、吉枯螺内酯 B(JKL B, )、那格列酮 E(NGL E, )、雷公藤红素(TPL, )、布鲁斯汀(BRC, )、二氢卡帕他丁 A(DCT A, )和柠檬苦素(LMN, )及其天然类似物和合成衍生物。希望这篇综述能够支持未来从天然产物中开发出更多有效的抗癌药物。

相似文献

1
Development of Potential Antitumor Agents from the Scaffolds of Plant-Derived Terpenoid Lactones.
J Med Chem. 2020 Dec 24;63(24):15410-15448. doi: 10.1021/acs.jmedchem.0c01449. Epub 2020 Dec 8.
2
Development of Anticancer Agents from Plant-Derived Sesquiterpene Lactones.
Curr Med Chem. 2016;23(23):2397-420. doi: 10.2174/0929867323666160510123255.
3
What made sesquiterpene lactones reach cancer clinical trials?
Drug Discov Today. 2010 Aug;15(15-16):668-78. doi: 10.1016/j.drudis.2010.06.002. Epub 2010 Jun 9.
4
Cytotoxic activity of some natural and synthetic sesquiterpene lactones.
Planta Med. 2005 Dec;71(12):1176-8. doi: 10.1055/s-2005-873139.
5
Recent Advances on Cytotoxic Sesquiterpene Lactones.
Curr Pharm Des. 2018;24(36):4355-4361. doi: 10.2174/1381612825666190119114323.
6
Acasiane A and B and farnesirane A and B, diterpene derivatives from the roots of Acacia farnesiana.
Planta Med. 2009 Feb;75(3):256-61. doi: 10.1055/s-0028-1112201. Epub 2008 Dec 19.
7
Sesquiterpene lactones as drugs with multiple targets in cancer treatment: focus on parthenolide.
Anticancer Drugs. 2012 Oct;23(9):883-96. doi: 10.1097/CAD.0b013e328356cad9.
9
Betulinic acid, a natural compound with potent anticancer effects.
Anticancer Drugs. 2010 Mar;21(3):215-27. doi: 10.1097/CAD.0b013e3283357c62.
10
Application of sesquiterpene lactone: A new promising way for cancer therapy based on anticancer activity.
Biomed Pharmacother. 2018 Oct;106:239-246. doi: 10.1016/j.biopha.2018.06.131. Epub 2018 Jun 28.

引用本文的文献

1
Ginkgetin from Ginkgo biloba: mechanistic insights into anticancer efficacy.
Nat Prod Bioprospect. 2025 Aug 5;15(1):50. doi: 10.1007/s13659-025-00535-6.
2
Natural sesquiterpene lactones in prostate cancer therapy: mechanisms and sources.
Med Oncol. 2025 May 15;42(6):212. doi: 10.1007/s12032-025-02740-2.
3
Bioactive Secondary Metabolites from Linn. Roots: Isolation, Characterization, and Cytotoxic Evaluation.
Curr Pharm Des. 2025;31(15):1239-1246. doi: 10.2174/0113816128299481240223054918.
4
Plant sesquiterpene lactones.
Philos Trans R Soc Lond B Biol Sci. 2024 Nov 18;379(1914):20230350. doi: 10.1098/rstb.2023.0350. Epub 2024 Sep 30.
5
Enantioselective Nickel-Catalyzed α-Spirocyclization of Lactones.
Org Lett. 2024 Aug 16;26(32):6793-6797. doi: 10.1021/acs.orglett.4c01661. Epub 2024 Aug 1.
6
Prolong the shelf-life of the Pakchoi seedlings through the ammonium glycyrrhizinate.
Food Chem X. 2024 Jul 3;23:101620. doi: 10.1016/j.fochx.2024.101620. eCollection 2024 Oct 30.
7
Development of Potential Therapeutic Agents from Black Elderberries (the Fruits of L.).
Molecules. 2024 Jun 22;29(13):2971. doi: 10.3390/molecules29132971.
9
Characterization of Terpenoids from the Ambrosia Beetle Symbiont and Laurel Wilt Pathogen .
J Fungi (Basel). 2023 Dec 7;9(12):1175. doi: 10.3390/jof9121175.
10
Vincamine, from an antioxidant and a cerebral vasodilator to its anticancer potential.
Bioorg Med Chem. 2023 Sep 7;92:117439. doi: 10.1016/j.bmc.2023.117439. Epub 2023 Aug 9.

本文引用的文献

1
Andrographolide-loaded silk fibroin nanoparticles.
RSC Adv. 2018 Oct 9;8(60):34726-34732. doi: 10.1039/c8ra04156c. eCollection 2018 Oct 4.
4
Unprecedented Quassinoids from : Biogenetic Evidence and Antifeedant Effects.
J Nat Prod. 2020 May 22;83(5):1674-1683. doi: 10.1021/acs.jnatprod.0c00244. Epub 2020 Apr 20.
5
Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019.
J Nat Prod. 2020 Mar 27;83(3):770-803. doi: 10.1021/acs.jnatprod.9b01285. Epub 2020 Mar 12.
8
Identification of nagilactone E as a protein synthesis inhibitor with anticancer activity.
Acta Pharmacol Sin. 2020 May;41(5):698-705. doi: 10.1038/s41401-019-0332-7. Epub 2020 Feb 11.
10
Andrographolide potentiates PD-1 blockade immunotherapy by inhibiting COX2-mediated PGE2 release.
Int Immunopharmacol. 2020 Apr;81:106206. doi: 10.1016/j.intimp.2020.106206. Epub 2020 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验