Suppr超能文献

一种通过基因组改组进行快速实验室进化的方案,用于…… (原文此处不完整)

A protocol of rapid laboratory evolution by genome shuffling in .

作者信息

Wu Li, Wang Mengzhu, Zha Genhan, Zhou Jungang, Yu Yao, Lu Hong

机构信息

State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.

Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China.

出版信息

MethodsX. 2020 Nov 12;7:101138. doi: 10.1016/j.mex.2020.101138. eCollection 2020.

Abstract

Genome shuffling is a process to combine advantage traits by the recombination of the entire genome and it has been successfully applied in the laboratory evolution of various industrial microorganisms. However, genome shuffling has not been described in (KM), a promising yeast host for the expression of heterologous proteins. In this protocol, genome shuffling in KM is performed by sexual reproduction and is combined with high-throughput screening to obtain high-yielding strains. Notably, the screening of diploid clones risen from one mating mixture is carried out to improve the effectiveness of evolution. Mating-sporulation-mating cycles are repeated to obtain KM strain with ideal traits. •The method combines genome shuffling with high-throughput to achieve strains displaying high yielding of heterologous proteins.•This method can be applied to the genome shuffling of other species when only a few starting strains are available for sexual reproduction.

摘要

基因组改组是一种通过整个基因组重组来组合优势性状的过程,并且已成功应用于各种工业微生物的实验室进化。然而,在克鲁维酵母(KM)中尚未描述基因组改组,KM是一种用于表达异源蛋白的有前景的酵母宿主。在本方案中,KM中的基因组改组通过有性繁殖进行,并与高通量筛选相结合以获得高产菌株。值得注意的是,对从一个交配混合物中产生的二倍体克隆进行筛选,以提高进化的有效性。重复交配-孢子形成-交配循环以获得具有理想性状的KM菌株。•该方法将基因组改组与高通量相结合,以获得显示高产异源蛋白的菌株。•当只有少数起始菌株可用于有性繁殖时,该方法可应用于其他物种的基因组改组。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8261/7701259/2eca2cdec8e5/fx1.jpg

相似文献

1
A protocol of rapid laboratory evolution by genome shuffling in .
MethodsX. 2020 Nov 12;7:101138. doi: 10.1016/j.mex.2020.101138. eCollection 2020.
2
Improving the expression of a heterologous protein by genome shuffling in Kluyveromyces marxianus.
J Biotechnol. 2020 Aug 20;320:11-16. doi: 10.1016/j.jbiotec.2020.06.007. Epub 2020 Jun 12.
3
Engineering Kluyveromyces marxianus as a Robust Synthetic Biology Platform Host.
mBio. 2018 Sep 25;9(5):e01410-18. doi: 10.1128/mBio.01410-18.
5
Meiosis-Based Laboratory Evolution of the Thermal Tolerance in .
Front Bioeng Biotechnol. 2022 Jan 11;9:799756. doi: 10.3389/fbioe.2021.799756. eCollection 2021.
6
Physiological and metabolic diversity in the yeast Kluyveromyces marxianus.
Antonie Van Leeuwenhoek. 2011 Nov;100(4):507-19. doi: 10.1007/s10482-011-9606-x. Epub 2011 Jun 15.
7
Evolutionary engineering by genome shuffling.
Appl Microbiol Biotechnol. 2014 May;98(9):3877-87. doi: 10.1007/s00253-014-5616-8. Epub 2014 Mar 5.
8
Applications and research advance of genome shuffling for industrial microbial strains improvement.
World J Microbiol Biotechnol. 2020 Sep 24;36(10):158. doi: 10.1007/s11274-020-02936-w.
9
Genome shuffling of the nonconventional yeast Pichia anomala for improved sugar alcohol production.
Microb Cell Fact. 2015 Aug 7;14:112. doi: 10.1186/s12934-015-0303-8.
10
Construction of recombinant Kluyveromyces marxianus UFV-3 to express dengue virus type 1 nonstructural protein 1 (NS1).
Appl Microbiol Biotechnol. 2015 Feb;99(3):1191-203. doi: 10.1007/s00253-014-5963-5. Epub 2014 Aug 2.

引用本文的文献

1
Meiosis-Based Laboratory Evolution of the Thermal Tolerance in .
Front Bioeng Biotechnol. 2022 Jan 11;9:799756. doi: 10.3389/fbioe.2021.799756. eCollection 2021.

本文引用的文献

1
Improving the expression of a heterologous protein by genome shuffling in Kluyveromyces marxianus.
J Biotechnol. 2020 Aug 20;320:11-16. doi: 10.1016/j.jbiotec.2020.06.007. Epub 2020 Jun 12.
4
Novel methods of genome shuffling in Saccharomyces cerevisiae.
Biotechnol Lett. 2009 May;31(5):671-7. doi: 10.1007/s10529-009-9916-5. Epub 2009 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验