Suppr超能文献

相似结构是否具有相似的无观察不良效应水平 (NOAEL) 值?探索估算 NOAEL 界限和不确定性的化学生信学方法。

Do Similar Structures Have Similar No Observed Adverse Effect Level (NOAEL) Values? Exploring Chemoinformatics Approaches for Estimating NOAEL Bounds and Uncertainties.

机构信息

Molecular Networks GmbH Computerchemie, Neumeyerstraße 28, 90411 Nürnberg, Germany.

Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States.

出版信息

Chem Res Toxicol. 2021 Feb 15;34(2):616-633. doi: 10.1021/acs.chemrestox.0c00429. Epub 2020 Dec 9.

Abstract

Determination of the no observed adverse effect level (NOAEL) of a substance is an important step in safety and regulatory assessments. Application of conventional strategies, for example, quantitative structure-activity relationship (QSAR) models, to predict NOAEL values is inherently problematic. Whereas QSAR models for well-defined toxicity endpoints such as Ames mutagenicity or skin sensitization can be developed from mechanistic knowledge of molecular initiating events and adverse outcome pathways, QSAR is not appropriate for predicting a NOAEL value, a concentration at which "no effect" is observed. This paper presents a chemoinformatics approach and explores how it can be further refined through the incorporation of toxicity endpoint-specific information to estimate confidence bounds for the NOAEL of a target substance, given experimentally determined NOAEL values for one or more suitable analogues. With a sufficiently large NOAEL database, we analyze how a difference in NOAEL values for pairs of structures depends on their pairwise similarity, where similarity takes both structural features and physicochemical properties into account. The width of the estimate NOAEL confidence interval is proportional to the uncertainty. Using the new threshold of toxicological concern (TTC) database enriched with antimicrobials, examples are presented to illustrate how uncertainty decreases with increasing analogue quality and also how NOAEL bounds estimation can be significantly improved by filtering the full database to include only substances that are in structure categories relevant to the target and analogue.

摘要

确定物质的无观察不良效应水平 (NOAEL) 是安全性和监管评估的重要步骤。应用传统策略,例如定量构效关系 (QSAR) 模型,来预测 NOAEL 值本身就存在问题。虽然对于明确定义的毒性终点(如 Ames 致突变性或皮肤致敏性)的 QSAR 模型可以从分子起始事件和不良结局途径的机制知识中开发出来,但 QSAR 不适用于预测 NOAEL 值,即观察到“无效应”的浓度。本文提出了一种化学生信方法,并探讨了如何通过纳入毒性终点特异性信息来进一步改进该方法,以估计给定一个或多个合适类似物的实验确定的 NOAEL 值时目标物质的 NOAEL 的置信区间。对于足够大的 NOAEL 数据库,我们分析了一对结构的 NOAEL 值差异如何取决于它们的两两相似性,其中相似性既考虑结构特征又考虑物理化学性质。估计 NOAEL 置信区间的宽度与不确定性成正比。使用新的毒理学关注阈值 (TTC) 数据库,其中包含了抗生素,通过实例说明了如何随着类似物质量的增加不确定性如何降低,以及如何通过过滤整个数据库仅包括与目标和类似物相关的结构类别中的物质来显著提高 NOAEL 边界估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验