Suppr超能文献

SARS-CoV-2 的不同突变与严重和轻度结果相关。

Different mutations in SARS-CoV-2 associate with severe and mild outcome.

机构信息

Department of Bioinformatics, Semmelweis University, Budapest, Hungary; TTK Momentum Cancer Biomarker Research Group, Budapest, Hungary.

Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.

出版信息

Int J Antimicrob Agents. 2021 Feb;57(2):106272. doi: 10.1016/j.ijantimicag.2020.106272. Epub 2020 Dec 23.

Abstract

INTRODUCTION

Genomic alterations in a viral genome can lead to either better or worse outcome and identifying these mutations is of utmost importance. Here, we correlated protein-level mutations in the SARS-CoV-2 virus to clinical outcome.

METHODS

Mutations in viral sequences from the GISAID virus repository were evaluated by using "hCoV-19/Wuhan/WIV04/2019" as the reference. Patient outcomes were classified as mild disease, hospitalization and severe disease (death or documented treatment in an intensive-care unit). Chi-square test was applied to examine the association between each mutation and patient outcome. False discovery rate was computed to correct for multiple hypothesis testing and results passing FDR cutoff of 5% were accepted as significant.

RESULTS

Mutations were mapped to amino acid changes for 3,733 non-silent mutations. Mutations correlated to mild outcome were located in the ORF8, NSP6, ORF3a, NSP4, and in the nucleocapsid phosphoprotein N. Mutations associated with inferior outcome were located in the surface (S) glycoprotein, in the RNA dependent RNA polymerase, in ORF3a, NSP3, ORF6 and N. Mutations leading to severe outcome with low prevalence were found in the ORF3A and in NSP7 proteins. Four out of 22 of the most significant mutations mapped onto a 10 amino acid long phosphorylated stretch of N indicating that in spite of obvious sampling restrictions the approach can find functionally relevant sites in the viral genome.

CONCLUSIONS

We demonstrate that mutations in the viral genes may have a direct correlation to clinical outcome. Our results help to quickly identify SARS-CoV-2 infections harboring mutations related to severe outcome.

摘要

简介

病毒基因组中的基因组改变可能导致更好或更差的结果,识别这些突变至关重要。在这里,我们将 SARS-CoV-2 病毒的蛋白质水平突变与临床结果相关联。

方法

通过使用“hCoV-19/Wuhan/WIV04/2019”作为参考,评估来自 GISAID 病毒库的病毒序列中的突变。患者的结局分为轻症、住院和重症(死亡或在重症监护病房接受有记录的治疗)。应用卡方检验来检验每个突变与患者结局之间的关系。应用假发现率来校正多重假设检验,通过 FDR 截断值为 5%的结果被认为具有统计学意义。

结果

共映射了 3733 个非同义突变的氨基酸变化。与轻症结局相关的突变位于 ORF8、NSP6、ORF3a、NSP4 和核衣壳磷蛋白 N 中。与不良结局相关的突变位于表面(S)糖蛋白、RNA 依赖的 RNA 聚合酶、ORF3a、NSP3、ORF6 和 N 中。导致严重结局且发生率较低的突变发生在 ORF3A 和 NSP7 蛋白中。22 个最重要的突变中有 4 个映射到 N 上的 10 个氨基酸长的磷酸化区域,这表明尽管存在明显的采样限制,但该方法可以在病毒基因组中找到具有功能相关性的位点。

结论

我们证明病毒基因中的突变可能与临床结果直接相关。我们的研究结果有助于快速识别携带与严重后果相关突变的 SARS-CoV-2 感染。

相似文献

1
Different mutations in SARS-CoV-2 associate with severe and mild outcome.
Int J Antimicrob Agents. 2021 Feb;57(2):106272. doi: 10.1016/j.ijantimicag.2020.106272. Epub 2020 Dec 23.
2
Global analysis of more than 50,000 SARS-CoV-2 genomes reveals epistasis between eight viral genes.
Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):31519-31526. doi: 10.1073/pnas.2012331117. Epub 2020 Nov 17.
3
Analysis of SARS-CoV-2 Genomes from West Java, Indonesia.
Viruses. 2021 Oct 18;13(10):2097. doi: 10.3390/v13102097.
4
Assessment of intercontinents mutation hotspots and conserved domains within SARS-CoV-2 genome.
Infect Genet Evol. 2021 Dec;96:105097. doi: 10.1016/j.meegid.2021.105097. Epub 2021 Oct 1.
6
Introduction into the Marseille geographical area of a mild SARS-CoV-2 variant originating from sub-Saharan Africa: An investigational study.
Travel Med Infect Dis. 2021 Mar-Apr;40:101980. doi: 10.1016/j.tmaid.2021.101980. Epub 2021 Jan 31.
7
Proteo-Genomic Analysis of SARS-CoV-2: A Clinical Landscape of Single-Nucleotide Polymorphisms, COVID-19 Proteome, and Host Responses.
J Proteome Res. 2021 Mar 5;20(3):1591-1601. doi: 10.1021/acs.jproteome.0c00808. Epub 2021 Feb 8.
8
Global variation in SARS-CoV-2 proteome and its implication in pre-lockdown emergence and dissemination of 5 dominant SARS-CoV-2 clades.
Infect Genet Evol. 2021 Sep;93:104973. doi: 10.1016/j.meegid.2021.104973. Epub 2021 Jun 18.
9
Differential mutation profile of SARS-CoV-2 proteins across deceased and asymptomatic patients.
Chem Biol Interact. 2021 Sep 25;347:109598. doi: 10.1016/j.cbi.2021.109598. Epub 2021 Jul 23.

引用本文的文献

4
Impact of SARS-CoV-2 Variant NSP6 on Pathogenicity: Genetic Analysis and Cell Biology.
Curr Issues Mol Biol. 2025 May 14;47(5):361. doi: 10.3390/cimb47050361.
5
Association of RBD mutations with COVID-19 disease severity in the Iranian population.
Virus Genes. 2025 Jun 26. doi: 10.1007/s11262-025-02168-w.
8
A comprehensive review of current insights into the virulence factors of SARS-CoV-2.
J Virol. 2025 Feb 25;99(2):e0204924. doi: 10.1128/jvi.02049-24. Epub 2025 Jan 29.
9
Non-spike protein inhibition of SARS-CoV-2 by natural products through the key mediator protein ORF8.
Mol Biol Res Commun. 2025;14(1):73-91. doi: 10.22099/mbrc.2024.50245.2001.

本文引用的文献

1
Hospitalization and mortality associated with SARS-CoV-2 viral clades in COVID-19.
Sci Rep. 2021 Feb 26;11(1):4802. doi: 10.1038/s41598-021-82850-9.
4
Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus.
Cell. 2020 Aug 20;182(4):812-827.e19. doi: 10.1016/j.cell.2020.06.043. Epub 2020 Jul 3.
6
Virtual screening and dynamics of potential inhibitors targeting RNA binding domain of nucleocapsid phosphoprotein from SARS-CoV-2.
J Biomol Struct Dyn. 2021 Aug;39(12):4433-4448. doi: 10.1080/07391102.2020.1778536. Epub 2020 Jun 22.
8
Emergence of genomic diversity and recurrent mutations in SARS-CoV-2.
Infect Genet Evol. 2020 Sep;83:104351. doi: 10.1016/j.meegid.2020.104351. Epub 2020 May 5.
10
Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant.
J Transl Med. 2020 Apr 22;18(1):179. doi: 10.1186/s12967-020-02344-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验