Suppr超能文献

β-内酰胺类药物对抗革兰阳性菌的堡垒。

β-Lactams against the Fortress of the Gram-Positive Bacterium.

机构信息

Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States.

出版信息

Chem Rev. 2021 Mar 24;121(6):3412-3463. doi: 10.1021/acs.chemrev.0c01010. Epub 2020 Dec 29.

Abstract

The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.

摘要

单细胞细菌的生物多样性——无论是从形状、食物、代谢还是生态位来评估——肯定与多细胞真核生物不相上下(如果不是超过的话)。其生态位为真核生物的细菌与真核生物之间的关系通常是共生或停滞。然而,有些细菌在这种关系中寻求优势。其中一种最成功的细菌——对真核生物不利的细菌——是一种小(直径小于 1 μm)且近乎球形的细菌。几十年来,使用青霉素类和头孢菌素类等β-内酰胺抗生素成功地控制了其感染的临床症状。在这几十年中,它完善了对抗生素的耐药机制,而这些抗生素又被新一代的β-内酰胺结构所对抗。本综述通过更好地了解 如何保护β-内酰胺抗生素的酶靶标——青霉素结合蛋白,来探讨当前在生化和微生物学方面为保护β-内酰胺类抗生素的未来所做的广泛努力。青霉素结合蛋白是细胞壁生物合成的必需酶催化剂,了解细胞壁如何整合到细菌的保护性细胞包膜中,可能会发现新的抗菌药物和新的佐剂,从而保持β-内酰胺类抗生素的疗效。

相似文献

1
β-Lactams against the Fortress of the Gram-Positive Bacterium.
Chem Rev. 2021 Mar 24;121(6):3412-3463. doi: 10.1021/acs.chemrev.0c01010. Epub 2020 Dec 29.
2
PBP 4 Mediates High-Level Resistance to New-Generation Cephalosporins in Staphylococcus aureus.
Antimicrob Agents Chemother. 2016 Jun 20;60(7):3934-41. doi: 10.1128/AAC.00358-16. Print 2016 Jul.
4
Structural and kinetic analysis of the monofunctional Staphylococcus aureus PBP1.
J Struct Biol. 2024 Jun;216(2):108086. doi: 10.1016/j.jsb.2024.108086. Epub 2024 Mar 26.
5
High-Level Resistance of Staphylococcus aureus to β-Lactam Antibiotics Mediated by Penicillin-Binding Protein 4 (PBP4).
Antimicrob Agents Chemother. 2017 May 24;61(6). doi: 10.1128/AAC.02727-16. Print 2017 Jun.
8
Auxiliary factors: a chink in the armor of MRSA resistance to β-lactam antibiotics.
Curr Opin Microbiol. 2013 Oct;16(5):538-48. doi: 10.1016/j.mib.2013.06.012. Epub 2013 Jul 26.
9
Penicillin-Binding Protein 1 (PBP1) of Staphylococcus aureus Has Multiple Essential Functions in Cell Division.
mBio. 2022 Aug 30;13(4):e0066922. doi: 10.1128/mbio.00669-22. Epub 2022 Jun 15.
10
Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus.
IUBMB Life. 2014 Aug;66(8):572-7. doi: 10.1002/iub.1289. Epub 2014 Jul 14.

引用本文的文献

1
Discovery and Optimisation of Novel Bombinin-Derived Peptides from Bombina variegata against Staphylococcus aureus.
Probiotics Antimicrob Proteins. 2025 Apr 29. doi: 10.1007/s12602-025-10542-1.
2
The Secondary Resistome of Methicillin-Resistant to β-Lactam Antibiotics.
Antibiotics (Basel). 2025 Jan 21;14(2):112. doi: 10.3390/antibiotics14020112.
3
Transient comparison of techniques to counter multi-drug resistant bacteria: prime modules in curation of bacterial infections.
Front Antibiot. 2024 Jan 26;2:1309107. doi: 10.3389/frabi.2023.1309107. eCollection 2023.
5
Two codependent routes lead to high-level MRSA.
Science. 2024 Nov;386(6721):573-580. doi: 10.1126/science.adn1369. Epub 2024 Oct 31.
7
Citrate serves as a signal molecule to modulate carbon metabolism and iron homeostasis in Staphylococcus aureus.
PLoS Pathog. 2024 Jul 30;20(7):e1012425. doi: 10.1371/journal.ppat.1012425. eCollection 2024 Jul.
8
Interspecies variability in protein binding of antibiotics basis for translational PK/PD studies-a case study using cefazolin.
Antimicrob Agents Chemother. 2024 Apr 3;68(4):e0164723. doi: 10.1128/aac.01647-23. Epub 2024 Feb 20.
9
Strategies to Overcome Antimicrobial Resistance in Nosocomial Infections, A Review and Update.
Infect Disord Drug Targets. 2024;24(6):e260124226226. doi: 10.2174/0118715265276529231214105423.
10
α-Functionalisation of Cyclic Sulfides Enabled by Lithiation Trapping.
Angew Chem Int Ed Engl. 2024 Jan 8;63(2):e202314423. doi: 10.1002/anie.202314423. Epub 2023 Dec 7.

本文引用的文献

2
FtsZ dynamics in bacterial division: What, how, and why?
Curr Opin Cell Biol. 2021 Feb;68:163-172. doi: 10.1016/j.ceb.2020.10.013. Epub 2020 Nov 18.
4
Combating Antibiotic Tolerance Through Activating Bacterial Metabolism.
Front Microbiol. 2020 Oct 22;11:577564. doi: 10.3389/fmicb.2020.577564. eCollection 2020.
5
New β-Lactam-β-Lactamase Inhibitor Combinations.
Clin Microbiol Rev. 2020 Nov 11;34(1). doi: 10.1128/CMR.00115-20. Print 2020 Dec 16.
6
Distinct Effectiveness of Oritavancin against Tolerance-Induced .
Antibiotics (Basel). 2020 Nov 8;9(11):789. doi: 10.3390/antibiotics9110789.
8
Carbapenems drive the collateral resistance to ceftaroline in cystic fibrosis patients with MRSA.
Commun Biol. 2020 Oct 22;3(1):599. doi: 10.1038/s42003-020-01313-5.
9
Anti-staphylococcal activity and mode of action of thioridazine photoproducts.
Sci Rep. 2020 Oct 22;10(1):18043. doi: 10.1038/s41598-020-74752-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验