Suppr超能文献

展望未来:青光眼的基因和细胞治疗。

Looking into the future: Gene and cell therapies for glaucoma.

机构信息

College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA.

College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.

出版信息

Vet Ophthalmol. 2021 Mar;24 Suppl 1(Suppl 1):16-33. doi: 10.1111/vop.12858. Epub 2021 Jan 7.

Abstract

Glaucoma is a complex group of optic neuropathies that affects both humans and animals. Intraocular pressure (IOP) elevation is a major risk factor that results in the loss of retinal ganglion cells (RGCs) and their axons. Currently, lowering IOP by medical and surgical methods is the only approved treatment for primary glaucoma, but there is no cure, and vision loss often progresses despite therapy. Recent technologic advances provide us with a better understanding of disease mechanisms and risk factors; this will permit earlier diagnosis of glaucoma and initiation of therapy sooner and more effectively. Gene and cell therapies are well suited to target these mechanisms specifically with the potential to achieve a lasting therapeutic effect. Much progress has been made in laboratory settings to develop these novel therapies for the eye. Gene and cell therapies have already been translated into clinical application for some inherited retinal dystrophies and age-related macular degeneration (AMD). Except for the intravitreal application of ciliary neurotrophic factor (CNTF) by encapsulated cell technology for RGC neuroprotection, there has been no other clinical translation of gene and cell therapies for glaucoma so far. Possible application of gene and cell therapies consists of long-term IOP control via increased aqueous humor drainage, including inhibition of fibrosis following filtration surgery, RGC neuroprotection and neuroregeneration, modification of ocular biomechanics for improved IOP tolerance, and inhibition of inflammation and neovascularization to prevent the development of some forms of secondary glaucoma.

摘要

青光眼是一组影响人类和动物的复杂视神经病变。眼内压(IOP)升高是导致视网膜神经节细胞(RGC)及其轴突丧失的主要危险因素。目前,通过药物和手术降低 IOP 是原发性青光眼唯一批准的治疗方法,但没有治愈方法,尽管进行了治疗,视力丧失仍常常进展。最近的技术进步使我们更好地了解疾病机制和危险因素;这将允许更早地诊断青光眼,并更早、更有效地开始治疗。基因和细胞疗法非常适合针对这些机制,具有实现持久治疗效果的潜力。在实验室环境中,已经为眼部开发这些新型疗法取得了很大进展。基因和细胞疗法已经被转化为一些遗传性视网膜营养不良和年龄相关性黄斑变性(AMD)的临床应用。除了用细胞包封技术将睫状神经营养因子(CNTF)眼内注射用于 RGC 神经保护之外,目前尚无其他基因和细胞疗法用于青光眼的临床转化。基因和细胞疗法的可能应用包括通过增加房水引流来长期控制 IOP,包括抑制滤过性手术后面部纤维化、RGC 神经保护和神经再生、改善 IOP 耐受性的眼生物力学修饰以及抑制炎症和新生血管形成以预防某些形式的继发性青光眼的发展。

相似文献

1
Looking into the future: Gene and cell therapies for glaucoma.
Vet Ophthalmol. 2021 Mar;24 Suppl 1(Suppl 1):16-33. doi: 10.1111/vop.12858. Epub 2021 Jan 7.
3
Gene therapy strategies for glaucoma from IOP reduction to retinal neuroprotection: Progress towards non-viral systems.
Adv Drug Deliv Rev. 2023 May;196:114781. doi: 10.1016/j.addr.2023.114781. Epub 2023 Mar 20.
4
Regulated Cell Death of Retinal Ganglion Cells in Glaucoma: Molecular Insights and Therapeutic Potentials.
Cell Mol Neurobiol. 2023 Oct;43(7):3161-3178. doi: 10.1007/s10571-023-01373-1. Epub 2023 Jun 20.
8
Innovative IOP-Independent Neuroprotection and Neuroregeneration Strategies in the Pipeline for Glaucoma.
J Ophthalmol. 2020 Apr 10;2020:9329310. doi: 10.1155/2020/9329310. eCollection 2020.
9
[Aiming for zero blindness].
Nippon Ganka Gakkai Zasshi. 2015 Mar;119(3):168-93; discussion 194.

引用本文的文献

1
The RNA content of extracellular vesicles from gene-edited hiPSC-RPE show potential as biomarkers of retinal degeneration.
Mol Ther Methods Clin Dev. 2025 Mar 18;33(2):101452. doi: 10.1016/j.omtm.2025.101452. eCollection 2025 Jun 12.
3
A Mini-Review on Gene Therapy in Glaucoma and Future Directions.
Int J Mol Sci. 2024 Oct 14;25(20):11019. doi: 10.3390/ijms252011019.
5
CRISPR-Cas9-mediated deletion of carbonic anhydrase 2 in the ciliary body to treat glaucoma.
Cell Rep Med. 2024 May 21;5(5):101524. doi: 10.1016/j.xcrm.2024.101524. Epub 2024 Apr 25.
6
AAV-mediated gene therapies for glaucoma and uveitis: are we there yet?
Expert Rev Mol Med. 2024 Apr 15;26:e9. doi: 10.1017/erm.2024.4.

本文引用的文献

1
Medical anti-glaucoma therapy: Beyond the drop.
Vet Ophthalmol. 2021 Mar;24 Suppl 1:2-15. doi: 10.1111/vop.12843. Epub 2020 Nov 9.
2
The Association Between Ocular Rigidity and Neuroretinal Damage in Glaucoma.
Invest Ophthalmol Vis Sci. 2020 Nov 2;61(13):11. doi: 10.1167/iovs.61.13.11.
3
Assessment of Visual and Retinal Function Following In Vivo Genipin-Induced Scleral Crosslinking.
Transl Vis Sci Technol. 2020 Sep 8;9(10):8. doi: 10.1167/tvst.9.10.8. eCollection 2020 Sep.
4
Suprachoroidal gene transfer with nonviral nanoparticles.
Sci Adv. 2020 Jul 3;6(27). doi: 10.1126/sciadv.aba1606. Print 2020 Jul.
5
Axon Regeneration in the Mammalian Optic Nerve.
Annu Rev Vis Sci. 2020 Sep 15;6:195-213. doi: 10.1146/annurev-vision-022720-094953.
6
Extraocular, periocular, and intraocular routes for sustained drug delivery for glaucoma.
Prog Retin Eye Res. 2021 May;82:100901. doi: 10.1016/j.preteyeres.2020.100901. Epub 2020 Sep 4.
7
Corneal Hysteresis as a Biomarker of Glaucoma: Current Insights.
Clin Ophthalmol. 2020 Aug 10;14:2255-2264. doi: 10.2147/OPTH.S236114. eCollection 2020.
9
Experimental models of glaucoma filtration surgery.
Acta Ophthalmol. 2021 Feb;99(1):9-15. doi: 10.1111/aos.14485. Epub 2020 Jul 26.
10
Corneal Stiffness and Collagen Cross-Linking Proteins in Glaucoma: Potential for Novel Therapeutic Strategy.
J Ocul Pharmacol Ther. 2020 Oct;36(8):582-594. doi: 10.1089/jop.2019.0118. Epub 2020 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验