Maziarka Łukasz, Pocha Agnieszka, Kaczmarczyk Jan, Rataj Krzysztof, Danel Tomasz, Warchoł Michał
Ardigen, Podole 76, 30-394, Cracow, Poland.
Faculty of Mathematics and Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348, Cracow, Poland.
J Cheminform. 2020 Jan 8;12(1):2. doi: 10.1186/s13321-019-0404-1.
Designing a molecule with desired properties is one of the biggest challenges in drug development, as it requires optimization of chemical compound structures with respect to many complex properties. To improve the compound design process, we introduce Mol-CycleGAN-a CycleGAN-based model that generates optimized compounds with high structural similarity to the original ones. Namely, given a molecule our model generates a structurally similar one with an optimized value of the considered property. We evaluate the performance of the model on selected optimization objectives related to structural properties (presence of halogen groups, number of aromatic rings) and to a physicochemical property (penalized logP). In the task of optimization of penalized logP of drug-like molecules our model significantly outperforms previous results.
设计具有所需特性的分子是药物研发中最大的挑战之一,因为这需要针对许多复杂特性对化合物结构进行优化。为了改进化合物设计过程,我们引入了Mol-CycleGAN——一种基于CycleGAN的模型,它能生成与原始化合物具有高度结构相似性的优化化合物。也就是说,给定一个分子,我们的模型会生成一个结构相似且所考虑特性具有优化值的分子。我们在与结构特性(卤素基团的存在、芳香环的数量)和物理化学特性(惩罚对数P)相关的选定优化目标上评估该模型的性能。在类药物分子惩罚对数P的优化任务中,我们的模型显著优于先前的结果。