Suppr超能文献

抗生素耐药性的基因组进化取决于长期实验后的遗传背景。

Genomic evolution of antibiotic resistance is contingent on genetic background following a long-term experiment with .

机构信息

BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824;

Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824.

出版信息

Proc Natl Acad Sci U S A. 2021 Feb 2;118(5). doi: 10.1073/pnas.2016886118.

Abstract

Antibiotic resistance is a growing health concern. Efforts to control resistance would benefit from an improved ability to forecast when and how it will evolve. Epistatic interactions between mutations can promote divergent evolutionary trajectories, which complicates our ability to predict evolution. We recently showed that differences between genetic backgrounds can lead to idiosyncratic responses in the evolvability of phenotypic resistance, even among closely related strains. In this study, we examined whether a strain's genetic background also influences the genotypic evolution of resistance. Do lineages founded by different genotypes take parallel or divergent mutational paths to achieve their evolved resistance states? We addressed this question by sequencing the complete genomes of antibiotic-resistant clones that evolved from several different genetic starting points during our earlier experiments. We first validated our statistical approach by quantifying the specificity of genomic evolution with respect to antibiotic treatment. As expected, mutations in particular genes were strongly associated with each drug. Then, we determined that replicate lines evolved from the same founding genotypes had more parallel mutations at the gene level than lines evolved from different founding genotypes, although these effects were more subtle than those showing antibiotic specificity. Taken together with our previous work, we conclude that historical contingency can alter both genotypic and phenotypic pathways to antibiotic resistance.

摘要

抗生素耐药性是一个日益严重的健康问题。为了控制耐药性,我们需要提高预测耐药性何时以及如何演变的能力。突变之间的上位性相互作用可以促进不同的进化轨迹,这使得我们预测进化的能力变得复杂。我们最近表明,遗传背景的差异会导致表型耐药性进化能力的独特反应,即使是在密切相关的菌株之间也是如此。在这项研究中,我们研究了一个菌株的遗传背景是否也会影响其耐药性的基因型进化。不同基因型的谱系在达到其进化的耐药状态时,是否会采取平行或发散的突变路径?我们通过对从我们早期实验中的几个不同遗传起点进化而来的抗生素耐药性克隆的完整基因组进行测序来解决这个问题。我们首先通过量化基因组进化相对于抗生素处理的特异性来验证我们的统计方法。正如预期的那样,特定基因的突变与每种药物强烈相关。然后,我们确定从相同起始基因型进化而来的重复系在基因水平上的突变比从不同起始基因型进化而来的系更具有平行性,尽管这些影响比显示抗生素特异性的影响更细微。结合我们之前的工作,我们得出结论,历史偶然性可以改变抗生素耐药性的基因型和表型途径。

相似文献

2
Historical contingency in the evolution of antibiotic resistance after decades of relaxed selection.
PLoS Biol. 2019 Oct 23;17(10):e3000397. doi: 10.1371/journal.pbio.3000397. eCollection 2019 Oct.
3
Initial mutations direct alternative pathways of protein evolution.
PLoS Genet. 2011 Mar;7(3):e1001321. doi: 10.1371/journal.pgen.1001321. Epub 2011 Mar 3.
4
Antibiotic collateral sensitivity is contingent on the repeatability of evolution.
Nat Commun. 2019 Jan 18;10(1):334. doi: 10.1038/s41467-018-08098-6.
5
Bypass of genetic constraints during mutator evolution to antibiotic resistance.
Proc Biol Sci. 2015 Apr 7;282(1804):20142698. doi: 10.1098/rspb.2014.2698.
9
Genomics of rapid adaptation to antibiotics: convergent evolution and scalable sequence amplification.
Genome Biol Evol. 2014 May 20;6(6):1287-301. doi: 10.1093/gbe/evu106.
10
Highly parallel lab evolution reveals that epistasis can curb the evolution of antibiotic resistance.
Nat Commun. 2020 Jun 19;11(1):3105. doi: 10.1038/s41467-020-16932-z.

引用本文的文献

3
Experimental evolution in an era of molecular manipulation.
Nat Rev Genet. 2025 Jul 21. doi: 10.1038/s41576-025-00867-6.
4
ESKAPE pathogens rapidly develop resistance against antibiotics in development in vitro.
Nat Microbiol. 2025 Feb;10(2):313-331. doi: 10.1038/s41564-024-01891-8. Epub 2025 Jan 13.
5
Evolutionary trajectories of β-lactam resistance in strains.
mBio. 2024 Dec 11;15(12):e0289724. doi: 10.1128/mbio.02897-24. Epub 2024 Nov 14.
6
Mutant fate in spatially structured populations on graphs: Connecting models to experiments.
PLoS Comput Biol. 2024 Sep 6;20(9):e1012424. doi: 10.1371/journal.pcbi.1012424. eCollection 2024 Sep.
8
Plasmid-encoded insertion sequences promote rapid adaptation in clinical enterobacteria.
Nat Ecol Evol. 2024 Nov;8(11):2097-2112. doi: 10.1038/s41559-024-02523-4. Epub 2024 Aug 28.
10
Preserving the efficacy of antibiotics to tackle antibiotic resistance.
Microb Biotechnol. 2024 Jul;17(7):e14528. doi: 10.1111/1751-7915.14528.

本文引用的文献

1
Highly parallel lab evolution reveals that epistasis can curb the evolution of antibiotic resistance.
Nat Commun. 2020 Jun 19;11(1):3105. doi: 10.1038/s41467-020-16932-z.
2
Genomic and phenotypic evolution of in a novel citrate-only resource environment.
Elife. 2020 May 29;9:e55414. doi: 10.7554/eLife.55414.
3
Pervasive and diverse collateral sensitivity profiles inform optimal strategies to limit antibiotic resistance.
PLoS Biol. 2019 Oct 25;17(10):e3000515. doi: 10.1371/journal.pbio.3000515. eCollection 2019 Oct.
4
Historical contingency in the evolution of antibiotic resistance after decades of relaxed selection.
PLoS Biol. 2019 Oct 23;17(10):e3000397. doi: 10.1371/journal.pbio.3000397. eCollection 2019 Oct.
5
Distinct Roles of Outer Membrane Porins in Antibiotic Resistance and Membrane Integrity in .
Front Microbiol. 2019 Apr 30;10:953. doi: 10.3389/fmicb.2019.00953. eCollection 2019.
7
Antibiotic collateral sensitivity is contingent on the repeatability of evolution.
Nat Commun. 2019 Jan 18;10(1):334. doi: 10.1038/s41467-018-08098-6.
9
A New Role of OmpR in Acid and Osmotic Stress in and .
Front Microbiol. 2018 Nov 22;9:2656. doi: 10.3389/fmicb.2018.02656. eCollection 2018.
10
Contingency and determinism in evolution: Replaying life's tape.
Science. 2018 Nov 9;362(6415). doi: 10.1126/science.aam5979.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验