Suppr超能文献

膜-皮质连接蛋白对膜管挤出的影响。

Influence of membrane-cortex linkers on the extrusion of membrane tubes.

机构信息

Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom; MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom.

Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France; Sorbonne Université, Paris, France; Institut Curie, PSL Research University CNRS UMR 144, Paris, France.

出版信息

Biophys J. 2021 Feb 16;120(4):598-606. doi: 10.1016/j.bpj.2020.12.028. Epub 2021 Jan 16.

Abstract

The cell membrane is an inhomogeneous system composed of phospholipids, sterols, carbohydrates, and proteins that can be directly attached to underlying cytoskeleton. The protein linkers between the membrane and the cytoskeleton are believed to have a profound effect on the mechanical properties of the cell membrane and its ability to reshape. Here, we investigate the role of membrane-cortex linkers on the extrusion of membrane tubes using computer simulations and experiments. In simulations, we find that the force for tube extrusion has a nonlinear dependence on the density of membrane-cortex attachments: at a range of low and intermediate linker densities, the force is not significantly influenced by the presence of the membrane-cortex attachments and resembles that of the bare membrane. For large concentrations of linkers, however, the force substantially increases compared with the bare membrane. In both cases, the linkers provided membrane tubes with increased stability against coalescence. We then pulled tubes from HEK cells using optical tweezers for varying expression levels of the membrane-cortex attachment protein Ezrin. In line with simulations, we observed that overexpression of Ezrin led to an increased extrusion force, while Ezrin depletion had a negligible effect on the force. Our results shed light on the importance of local protein rearrangements for membrane reshaping at nanoscopic scales.

摘要

细胞膜是一个不均匀的系统,由磷脂、固醇、碳水化合物和蛋白质组成,可以直接附着在下面的细胞骨架上。膜和细胞骨架之间的蛋白质连接物被认为对细胞膜的机械性能及其重塑能力有深远的影响。在这里,我们使用计算机模拟和实验研究了膜皮质连接物在膜管挤出中的作用。在模拟中,我们发现管挤出的力与膜皮质附着的密度呈非线性关系:在低和中等附着密度范围内,力不受膜皮质附着的存在的显著影响,类似于裸膜的力。然而,对于较大浓度的连接物,力与裸膜相比显著增加。在这两种情况下,连接物都增加了膜管对聚结的稳定性。然后,我们使用光学镊子从 HEK 细胞中提取管,以改变膜皮质附着蛋白 Ezrin 的表达水平。与模拟结果一致,我们观察到 Ezrin 的过表达导致挤出力增加,而 Ezrin 的耗竭对力几乎没有影响。我们的结果揭示了局部蛋白质重排对纳米尺度下细胞膜重塑的重要性。

相似文献

1
Influence of membrane-cortex linkers on the extrusion of membrane tubes.
Biophys J. 2021 Feb 16;120(4):598-606. doi: 10.1016/j.bpj.2020.12.028. Epub 2021 Jan 16.
2
Role of E-cadherin in membrane-cortex interaction probed by nanotube extrusion.
Biophys J. 2009 Mar 18;96(6):2457-65. doi: 10.1016/j.bpj.2008.11.059.
4
Ezrin is a Major Regulator of Membrane Tension in Epithelial Cells.
Sci Rep. 2015 Oct 5;5:14700. doi: 10.1038/srep14700.
5
Tether extrusion from red blood cells: integral proteins unbinding from cytoskeleton.
Biophys J. 2007 Aug 15;93(4):1369-79. doi: 10.1529/biophysj.106.087908. Epub 2007 May 25.
7
Mechanics of Biomimetic Liposomes Encapsulating an Actin Shell.
Biophys J. 2015 Dec 15;109(12):2471-2479. doi: 10.1016/j.bpj.2015.10.050.
9
Effects of cytoskeletal drugs on actin cortex elasticity.
Exp Cell Res. 2017 Feb 15;351(2):173-181. doi: 10.1016/j.yexcr.2016.12.016. Epub 2016 Dec 27.
10
Ezrin interacts with the scaffold protein IQGAP1 and affects its cortical localization.
Biochim Biophys Acta. 2015 Sep;1853(9):2086-94. doi: 10.1016/j.bbamcr.2014.12.026. Epub 2014 Dec 30.

引用本文的文献

2
Softness or Stiffness What Contributes to Cancer and Cancer Metastasis?
Cells. 2025 Apr 12;14(8):584. doi: 10.3390/cells14080584.
3
Glycocalyx-induced formation of membrane tubes.
Biophys J. 2025 May 20;124(10):1631-1642. doi: 10.1016/j.bpj.2025.04.006. Epub 2025 Apr 11.
4
Making the cut: Multiscale simulation of membrane remodeling.
Curr Opin Struct Biol. 2024 Aug;87:102831. doi: 10.1016/j.sbi.2024.102831. Epub 2024 May 12.
5
Cell Membrane Tension Gradients, Membrane Flows, and Cellular Processes.
Physiology (Bethesda). 2024 Jul 1;39(4):0. doi: 10.1152/physiol.00007.2024. Epub 2024 Mar 19.
7
Viscoelastic phenotyping of red blood cells.
Biophys J. 2024 Apr 2;123(7):770-781. doi: 10.1016/j.bpj.2024.01.019. Epub 2024 Jan 23.
9
10
Mesoscale simulations: An indispensable approach to understand biomembranes.
Biophys J. 2023 Jun 6;122(11):1883-1889. doi: 10.1016/j.bpj.2023.02.017. Epub 2023 Feb 21.

本文引用的文献

1
Filopodia rotate and coil by actively generating twist in their actin shaft.
Nat Commun. 2022 Mar 28;13(1):1636. doi: 10.1038/s41467-022-28961-x.
2
Cell Surface Mechanics Gate Embryonic Stem Cell Differentiation.
Cell Stem Cell. 2021 Feb 4;28(2):209-216.e4. doi: 10.1016/j.stem.2020.10.017. Epub 2020 Nov 17.
3
Annexin A4 trimers are recruited by high membrane curvatures in giant plasma membrane vesicles.
Soft Matter. 2021 Jan 22;17(2):308-318. doi: 10.1039/d0sm00241k.
4
Cell Membranes Resist Flow.
Cell. 2018 Dec 13;175(7):1769-1779.e13. doi: 10.1016/j.cell.2018.09.054. Epub 2018 Nov 1.
6
Excess area dependent scaling behavior of nano-sized membrane tethers.
Phys Biol. 2018 Jan 11;15(2):026002. doi: 10.1088/1478-3975/aa9905.
7
Membrane tension: A challenging but universal physical parameter in cell biology.
Semin Cell Dev Biol. 2017 Nov;71:30-41. doi: 10.1016/j.semcdb.2017.08.030. Epub 2017 Aug 26.
8
The More the Tubular: Dynamic Bundling of Actin Filaments for Membrane Tube Formation.
PLoS Comput Biol. 2016 Jul 6;12(7):e1004982. doi: 10.1371/journal.pcbi.1004982. eCollection 2016 Jul.
9
Model for probing membrane-cortex adhesion by micropipette aspiration and fluctuation spectroscopy.
Biophys J. 2015 Apr 21;108(8):1878-86. doi: 10.1016/j.bpj.2015.02.027.
10
Dynamics of membrane tethers reveal novel aspects of cytoskeleton-membrane interactions in axons.
Biophys J. 2015 Feb 3;108(3):489-97. doi: 10.1016/j.bpj.2014.11.3480.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验