Suppr超能文献

柏林老龄化研究 II 中的性别评分发展:回顾性方法。

Gender score development in the Berlin Aging Study II: a retrospective approach.

机构信息

Berlin Institute for Gender in Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.

CCR (Centre for Cardiovascular Research) Berlin, Berlin, Germany.

出版信息

Biol Sex Differ. 2021 Jan 18;12(1):15. doi: 10.1186/s13293-020-00351-2.

Abstract

In addition to biological sex, gender, defined as the sociocultural dimension of being a woman or a man, plays a central role in health. However, there are so far few approaches to quantify gender in a retrospective manner in existing study datasets. We therefore aimed to develop a methodology that can be retrospectively applied to assess gender in existing cohorts. We used baseline data from the Berlin Aging Study II (BASE-II), obtained in 2009-2014 from 1869 participants aged 60 years and older. We identified 13 gender-related variables and used them to construct a gender score by using primary component and logistic regression analyses. Of these, nine variables contributed to a gender score: chronic stress, marital status, risk-taking behaviour, personality attributes: agreeableness, neuroticism, extraversion, loneliness, conscientiousness, and level of education. Females and males differed significantly in the distribution of the gender score, but a significant overlap was also found. Thus, we were able to develop a gender score in a retrospective manner from already collected data that characterized participants in addition to biological sex. This approach will allow researchers to introduce the notion of gender retrospectively into a large number of studies.

摘要

除了生物性别,性别(定义为女性或男性的社会文化维度)在健康中起着核心作用。然而,迄今为止,在现有的研究数据集中,很少有方法可以回顾性地量化性别。因此,我们旨在开发一种可以回顾性地应用于评估现有队列中性别的方法。我们使用了 2009-2014 年从 1869 名年龄在 60 岁及以上的参与者中获得的柏林老龄化研究 II(BASE-II)的基线数据。我们确定了 13 个与性别相关的变量,并使用主成分和逻辑回归分析来构建性别评分。其中,九个变量对性别评分有贡献:慢性压力、婚姻状况、冒险行为、人格属性:宜人性、神经质、外向性、孤独感、尽责性和受教育程度。女性和男性在性别评分的分布上存在显著差异,但也存在显著的重叠。因此,我们能够从已经收集的数据中以回顾性的方式开发出一个性别评分,该评分除了生物性别外,还可以描述参与者。这种方法将允许研究人员回顾性地将性别概念引入大量研究中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dae/7814714/68f260b5e51b/13293_2020_351_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验