Department of Agronomy, Kansas State University, Manhattan, KS, USA.
Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, USA.
Planta. 2021 Jan 23;253(2):48. doi: 10.1007/s00425-020-03563-3.
This study confirms a high level of metabolic resistance to the herbicide chlorsulfuron, inherited by a single dominant gene in a sorghum genotype (GL-1). Chlorsulfuron, an acetolactate synthase (ALS)-inhibitor, effectively controls post-emergence grass and broadleaf weeds but is not registered for use in sorghum because of crop injury. The objectives of this study were to characterize the inheritance and mechanism of chlorsulfuron resistance in the sorghum genotype GL-1. Chlorsulfuron dose-response experiments were conducted using GL-1 along with BTx623 (susceptible check), and Pioneer 84G62 (commercial sorghum hybrid). The F and F progeny were generated by crossing GL-1 with BTx623. To assess if the target site alterations bestow resistance, the ALS gene, the molecular target of chlorsulfuron, was sequenced from GL-1. The role of cytochrome P450 (CYP) in metabolizing chlorsulfuron, using malathion, a CYP-inhibitor was tested. The chlorsulfuron dose-response assay indicated that GL-1 and F progeny were ~ 20-fold more resistant to chlorsulfuron relative to BTx623. The F progenies segregated 3:1 (resistance: susceptibility) suggesting that chlorsulfuron resistance in GL-1 is a single dominant trait. No mutations in the ALS gene were detected in the GL-1; however, a significant reduction in biomass accumulation was found in plants pre-treated with malathion indicating that metabolism of chlorsulfuron contributes to resistance in GL-1. Also, GL-1 is highly susceptible to other herbicides (e.g., mesotrione and tembotrione) compared to Pioneer 84G62, suggesting the existence of a negative cross-resistance in GL-1. Overall, these results confirm a high level of metabolic resistance to chlorsulfuron inherited by a single dominant gene in GL-1 sorghum. These results have potential for developing chlorsulfuron-tolerant sorghum hybrids, with the ability to improve post-emergence weed control.
本研究证实,高粱基因型 GL-1 中的单个显性基因可使其对除草剂氯磺隆产生高水平的代谢抗性。氯磺隆是一种乙酰乳酸合成酶(ALS)抑制剂,可有效防治出苗后禾本科杂草和阔叶杂草,但由于对作物造成伤害,尚未在高粱上登记使用。本研究的目的是表征高粱基因型 GL-1 中氯磺隆抗性的遗传和机制。使用 GL-1 以及 BTx623(敏感对照)和 Pioneer 84G62(商业高粱杂交种)进行氯磺隆剂量反应实验。通过将 GL-1 与 BTx623 杂交产生 F1 和 F2 后代。为了评估靶标改变是否赋予抗性,从 GL-1 中测序了 ALS 基因,该基因是氯磺隆的分子靶标。使用马拉硫磷(一种 CYP 抑制剂)测试 CYP 在代谢氯磺隆中的作用。氯磺隆剂量反应测定表明,GL-1 和 F 后代对氯磺隆的抗性比 BTx623 高约 20 倍。F 后代分离为 3:1(抗性:敏感性),表明 GL-1 中的氯磺隆抗性是单一显性性状。在 GL-1 中未检测到 ALS 基因的突变;然而,在用马拉硫磷预处理的植物中发现生物量积累显著减少,表明 GL-1 中的氯磺隆代谢有助于抗性。此外,与 Pioneer 84G62 相比,GL-1 对其他除草剂(例如,噻酮磺隆和噻酮草酮)高度敏感,表明 GL-1 中存在负交叉抗性。总的来说,这些结果证实了 GL-1 高粱中单个显性基因对氯磺隆的高水平代谢抗性。这些结果有可能开发出对氯磺隆具有耐受性的高粱杂交种,从而提高出苗后杂草防治效果。