Suppr超能文献

基于 X 射线和 CT 扫描图像的 COVID-19 计算机辅助筛查:内部比较。

Computer aid screening of COVID-19 using X-ray and CT scan images: An inner comparison.

机构信息

Department of Electronics, Sambalpur University, Odisha, India.

Department of Computer Science and Engineering, VSSUT, Burla, Odisha, India.

出版信息

J Xray Sci Technol. 2021;29(2):197-210. doi: 10.3233/XST-200784.

Abstract

The objective of this study is to conduct a critical analysis to investigate and compare a group of computer aid screening methods of COVID-19 using chest X-ray images and computed tomography (CT) images. The computer aid screening method includes deep feature extraction, transfer learning, and machine learning image classification approach. The deep feature extraction and transfer learning method considered 13 pre-trained CNN models. The machine learning approach includes three sets of handcrafted features and three classifiers. The pre-trained CNN models include AlexNet, GoogleNet, VGG16, VGG19, Densenet201, Resnet18, Resnet50, Resnet101, Inceptionv3, Inceptionresnetv2, Xception, MobileNetv2 and ShuffleNet. The handcrafted features are GLCM, LBP & HOG, and machine learning based classifiers are KNN, SVM & Naive Bayes. In addition, the different paradigms of classifiers are also analyzed. Overall, the comparative analysis is carried out in 65 classification models, i.e., 13 in deep feature extraction, 13 in transfer learning, and 39 in the machine learning approaches. Finally, all classification models perform better when applying to the chest X-ray image set as comparing to the use of CT scan image set. Among 65 classification models, the VGG19 with SVM achieved the highest accuracy of 99.81%when applying to the chest X-ray images. In conclusion, the findings of this analysis study are beneficial for the researchers who are working towards designing computer aid tools for screening COVID-19 infection diseases.

摘要

本研究旨在进行批判性分析,以调查和比较一组使用胸部 X 光图像和计算机断层扫描(CT)图像的 COVID-19 计算机辅助筛查方法。计算机辅助筛查方法包括深度特征提取、迁移学习和机器学习图像分类方法。深度特征提取和迁移学习方法考虑了 13 个预训练的 CNN 模型。机器学习方法包括三组手工制作的特征和三个分类器。预训练的 CNN 模型包括 AlexNet、GoogleNet、VGG16、VGG19、Densenet201、Resnet18、Resnet50、Resnet101、Inceptionv3、Inceptionresnetv2、Xception、MobileNetv2 和 ShuffleNet。手工制作的特征是 GLCM、LBP 和 HOG,机器学习分类器是 KNN、SVM 和朴素贝叶斯。此外,还分析了不同的分类器范式。总体而言,在 65 个分类模型中进行了比较分析,即深度特征提取中有 13 个,迁移学习中有 13 个,机器学习方法中有 39 个。最后,与使用 CT 扫描图像集相比,所有分类模型在应用于胸部 X 光图像集时表现更好。在 65 个分类模型中,当应用于胸部 X 光图像时,VGG19 与 SVM 实现了最高的准确性 99.81%。总之,本分析研究的结果有助于研究人员设计用于筛查 COVID-19 感染疾病的计算机辅助工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验