Suppr超能文献

通过构建和测试自动化合成生物学加速生物燃料研究中的应变工程。

Accelerating strain engineering in biofuel research via build and test automation of synthetic biology.

机构信息

CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

CAS Key Laboratory of Quantitative Engineering Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

出版信息

Curr Opin Biotechnol. 2021 Feb;67:88-98. doi: 10.1016/j.copbio.2021.01.010. Epub 2021 Jan 25.

Abstract

Biofuels are a type of sustainable and renewable energy. However, for the economical production of bulk-volume biofuels, biosystems design is particularly challenging to achieve sufficient yield, titer, and productivity. Because of the lack of predictive modeling, high-throughput screening remains essential. Recently established biofoundries provide an emerging infrastructure to accelerate biological design-build-test-learn (DBTL) cycles through the integration of robotics, synthetic biology, and informatics. In this review, we first introduce the technical advances of build and test automation in synthetic biology, focusing on the use of industry-standard microplates for DNA assembly, chassis engineering, and enzyme and strain screening. Proof-of-concept studies on prototypes of automated foundries are then discussed, for improving biomass deconstruction, metabolic conversion, and host robustness. We conclude with future challenges and opportunities in creating a flexible, versatile, and data-driven framework to support biofuel research and development in biofoundries.

摘要

生物燃料是一种可持续和可再生能源。然而,为了经济地生产大量的生物燃料,生物系统设计在实现足够的产率、滴度和生产力方面特别具有挑战性。由于缺乏预测建模,高通量筛选仍然是必不可少的。最近建立的生物工厂提供了一个新兴的基础设施,通过集成机器人技术、合成生物学和信息学,来加速生物设计-构建-测试-学习(DBTL)周期。在这篇综述中,我们首先介绍了合成生物学中构建和测试自动化的技术进展,重点介绍了使用工业标准微孔板进行 DNA 组装、底盘工程和酶和菌株筛选。然后讨论了自动化工厂原型的概念验证研究,用于提高生物质解构、代谢转化和宿主稳健性。最后,我们总结了在创建一个灵活、通用和数据驱动的框架以支持生物燃料研究和开发方面的未来挑战和机遇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验